一种基于知识图谱的家谱知识推理与可视化框架

IF 3.4 3区 管理学 0 INFORMATION SCIENCE & LIBRARY SCIENCE
Ruan Wang, J. Deng, Xinhui Guan, Yuming He
{"title":"一种基于知识图谱的家谱知识推理与可视化框架","authors":"Ruan Wang, J. Deng, Xinhui Guan, Yuming He","doi":"10.1108/lht-05-2022-0265","DOIUrl":null,"url":null,"abstract":"PurposeWith the development of data mining technology, diverse and broader domain knowledge can be extracted automatically. However, the research on applying knowledge mapping and data visualization techniques to genealogical data is limited. This paper aims to fill this research gap by providing a systematic framework and process guidance for practitioners seeking to uncover hidden knowledge from genealogy.Design/methodology/approachBased on a literature review of genealogy's current knowledge reasoning research, the authors constructed an integrated framework for knowledge inference and visualization application using a knowledge graph. Additionally, the authors applied this framework in a case study using “Manchu Clan Genealogy” as the data source.FindingsThe case study shows that the proposed framework can effectively decompose and reconstruct genealogy. It demonstrates the reasoning, discovery, and web visualization application process of implicit information in genealogy. It enhances the effective utilization of Manchu genealogy resources by highlighting the intricate relationships among people, places, and time entities.Originality/valueThis study proposed a framework for genealogy knowledge reasoning and visual analysis utilizing a knowledge graph, including five dimensions: the target layer, the resource layer, the data layer, the inference layer, and the application layer. It helps to gather the scattered genealogy information and establish a data network with semantic correlations while establishing reasoning rules to enable inference discovery and visualization of hidden relationships.","PeriodicalId":47196,"journal":{"name":"Library Hi Tech","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework of genealogy knowledge reasoning and visualization based on a knowledge graph\",\"authors\":\"Ruan Wang, J. Deng, Xinhui Guan, Yuming He\",\"doi\":\"10.1108/lht-05-2022-0265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeWith the development of data mining technology, diverse and broader domain knowledge can be extracted automatically. However, the research on applying knowledge mapping and data visualization techniques to genealogical data is limited. This paper aims to fill this research gap by providing a systematic framework and process guidance for practitioners seeking to uncover hidden knowledge from genealogy.Design/methodology/approachBased on a literature review of genealogy's current knowledge reasoning research, the authors constructed an integrated framework for knowledge inference and visualization application using a knowledge graph. Additionally, the authors applied this framework in a case study using “Manchu Clan Genealogy” as the data source.FindingsThe case study shows that the proposed framework can effectively decompose and reconstruct genealogy. It demonstrates the reasoning, discovery, and web visualization application process of implicit information in genealogy. It enhances the effective utilization of Manchu genealogy resources by highlighting the intricate relationships among people, places, and time entities.Originality/valueThis study proposed a framework for genealogy knowledge reasoning and visual analysis utilizing a knowledge graph, including five dimensions: the target layer, the resource layer, the data layer, the inference layer, and the application layer. It helps to gather the scattered genealogy information and establish a data network with semantic correlations while establishing reasoning rules to enable inference discovery and visualization of hidden relationships.\",\"PeriodicalId\":47196,\"journal\":{\"name\":\"Library Hi Tech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Library Hi Tech\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/lht-05-2022-0265\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Library Hi Tech","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/lht-05-2022-0265","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

目的随着数据挖掘技术的发展,可以自动提取出多样化、更广泛的领域知识。然而,将知识映射和数据可视化技术应用于系谱数据的研究是有限的。本文旨在通过为寻求从谱系学中揭示隐藏知识的从业者提供系统的框架和过程指导来填补这一研究空白。设计/方法论/方法基于对系谱学当前知识推理研究的文献综述,作者使用知识图构建了一个知识推理和可视化应用的集成框架。此外,作者将这一框架应用于以“满族族谱”为数据来源的个案研究中。实例研究表明,该框架能够有效地对家谱进行分解和重构。它展示了谱系学中隐含信息的推理、发现和网络可视化应用过程。它通过突出人、地和时间实体之间错综复杂的关系,提高了满族家谱资源的有效利用率。原创性/价值本研究提出了一个利用知识图进行谱系知识推理和可视化分析的框架,包括五个维度:目标层、资源层、数据层、推理层和应用层。它有助于收集分散的谱系信息,建立具有语义相关性的数据网络,同时建立推理规则,实现推理发现和隐藏关系的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework of genealogy knowledge reasoning and visualization based on a knowledge graph
PurposeWith the development of data mining technology, diverse and broader domain knowledge can be extracted automatically. However, the research on applying knowledge mapping and data visualization techniques to genealogical data is limited. This paper aims to fill this research gap by providing a systematic framework and process guidance for practitioners seeking to uncover hidden knowledge from genealogy.Design/methodology/approachBased on a literature review of genealogy's current knowledge reasoning research, the authors constructed an integrated framework for knowledge inference and visualization application using a knowledge graph. Additionally, the authors applied this framework in a case study using “Manchu Clan Genealogy” as the data source.FindingsThe case study shows that the proposed framework can effectively decompose and reconstruct genealogy. It demonstrates the reasoning, discovery, and web visualization application process of implicit information in genealogy. It enhances the effective utilization of Manchu genealogy resources by highlighting the intricate relationships among people, places, and time entities.Originality/valueThis study proposed a framework for genealogy knowledge reasoning and visual analysis utilizing a knowledge graph, including five dimensions: the target layer, the resource layer, the data layer, the inference layer, and the application layer. It helps to gather the scattered genealogy information and establish a data network with semantic correlations while establishing reasoning rules to enable inference discovery and visualization of hidden relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Library Hi Tech
Library Hi Tech INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
8.30
自引率
44.10%
发文量
97
期刊介绍: ■Integrated library systems ■Networking ■Strategic planning ■Policy implementation across entire institutions ■Security ■Automation systems ■The role of consortia ■Resource access initiatives ■Architecture and technology ■Electronic publishing ■Library technology in specific countries ■User perspectives on technology ■How technology can help disabled library users ■Library-related web sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信