具有渐近非负Ricci曲率的非紧调和Ricci流的无呼吸定理

IF 1.3 3区 数学 Q1 MATHEMATICS
Jiarui Chen, Qun Chen
{"title":"具有渐近非负Ricci曲率的非紧调和Ricci流的无呼吸定理","authors":"Jiarui Chen, Qun Chen","doi":"10.1515/acv-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract By using the monotonicity of the log Sobolev functionals, we prove a no breathers theorem for noncompact harmonic Ricci flows under conditions on infimum of log Sobolev functionals and curvatures. As an application, we obtain a no breathers theorem for noncompact harmonic Ricci flows with asymptotically nonnegative Ricci curvature.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No breathers theorem for noncompact harmonic Ricci flows with asymptotically nonnegative Ricci curvature\",\"authors\":\"Jiarui Chen, Qun Chen\",\"doi\":\"10.1515/acv-2023-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract By using the monotonicity of the log Sobolev functionals, we prove a no breathers theorem for noncompact harmonic Ricci flows under conditions on infimum of log Sobolev functionals and curvatures. As an application, we obtain a no breathers theorem for noncompact harmonic Ricci flows with asymptotically nonnegative Ricci curvature.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2023-0003\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用log-Sobolev泛函的单调性,在log-Soblev泛函和曲率的下确界条件下,证明了非紧调和Ricci流的无呼吸定理。作为一个应用,我们得到了具有渐近非负Ricci曲率的非紧调和Ricci流的一个无呼吸定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No breathers theorem for noncompact harmonic Ricci flows with asymptotically nonnegative Ricci curvature
Abstract By using the monotonicity of the log Sobolev functionals, we prove a no breathers theorem for noncompact harmonic Ricci flows under conditions on infimum of log Sobolev functionals and curvatures. As an application, we obtain a no breathers theorem for noncompact harmonic Ricci flows with asymptotically nonnegative Ricci curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信