{"title":"脉冲泵送环境下膏体管道流动阻力特性研究","authors":"Haiyong Cheng, Zemin Liu, Shunchuan Wu, Hong Li, Jiaqi Zhu, Wei Sun, Guanzhao Jiang","doi":"10.1007/s12613-023-2644-3","DOIUrl":null,"url":null,"abstract":"<div><p>Paste flow patterns and microscopic particle structures were studied in a pressurized environment generated by a pulse pump. Complex loop-pipe experiments and fluid–solid coupling-based simulations were conducted. The scanning electron microscopy technique was also applied. Results revealed that flow resistance is closely related to pipeline curvature and angle in a complex pipe network. The vertical downward–straight pipe–inclined downward combination was adopted to effectively reduce the loss in resistance along with reducing the number of bends or increasing the radius of bend curvature. The maximum velocity ratio and velocity offset values could quantitatively characterize the influences of different pipeline layouts on the resistance. The correlation reached 96%. Particle distribution and interparticle forces affected flow resistance. Uniform particle states and weak interparticle forces were conducive to steady transport. Pulse pump pressure led to high flow resistance. It could improve pipe flow stability by increasing flow uniformity and particle motion stability. These results can contribute to safe and efficient paste filling.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 8","pages":"1596 - 1607"},"PeriodicalIF":5.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resistance characteristics of paste pipeline flow in a pulse-pumping environment\",\"authors\":\"Haiyong Cheng, Zemin Liu, Shunchuan Wu, Hong Li, Jiaqi Zhu, Wei Sun, Guanzhao Jiang\",\"doi\":\"10.1007/s12613-023-2644-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Paste flow patterns and microscopic particle structures were studied in a pressurized environment generated by a pulse pump. Complex loop-pipe experiments and fluid–solid coupling-based simulations were conducted. The scanning electron microscopy technique was also applied. Results revealed that flow resistance is closely related to pipeline curvature and angle in a complex pipe network. The vertical downward–straight pipe–inclined downward combination was adopted to effectively reduce the loss in resistance along with reducing the number of bends or increasing the radius of bend curvature. The maximum velocity ratio and velocity offset values could quantitatively characterize the influences of different pipeline layouts on the resistance. The correlation reached 96%. Particle distribution and interparticle forces affected flow resistance. Uniform particle states and weak interparticle forces were conducive to steady transport. Pulse pump pressure led to high flow resistance. It could improve pipe flow stability by increasing flow uniformity and particle motion stability. These results can contribute to safe and efficient paste filling.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 8\",\"pages\":\"1596 - 1607\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2644-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2644-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Resistance characteristics of paste pipeline flow in a pulse-pumping environment
Paste flow patterns and microscopic particle structures were studied in a pressurized environment generated by a pulse pump. Complex loop-pipe experiments and fluid–solid coupling-based simulations were conducted. The scanning electron microscopy technique was also applied. Results revealed that flow resistance is closely related to pipeline curvature and angle in a complex pipe network. The vertical downward–straight pipe–inclined downward combination was adopted to effectively reduce the loss in resistance along with reducing the number of bends or increasing the radius of bend curvature. The maximum velocity ratio and velocity offset values could quantitatively characterize the influences of different pipeline layouts on the resistance. The correlation reached 96%. Particle distribution and interparticle forces affected flow resistance. Uniform particle states and weak interparticle forces were conducive to steady transport. Pulse pump pressure led to high flow resistance. It could improve pipe flow stability by increasing flow uniformity and particle motion stability. These results can contribute to safe and efficient paste filling.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.