{"title":"金属矿山尾矿浓缩的微观机理","authors":"Huazhe Jiao, Wenbo Yang, Zhu’en Ruan, Jianxin Yu, Juanhong Liu, Yixuan Yang","doi":"10.1007/s12613-022-2587-0","DOIUrl":null,"url":null,"abstract":"<div><p>Water-locking flocs formed by ultrafine tailings particles will damage the thickener underflow concentration in the thickening process during paste preparation. The relationship between the mesostructure and seepage characteristics of tail mortar is typically ignored when investigating the deep dehydration stage. A shearing seepage test of an unclassified tailing–sedimentation bed was performed with copper tailings, and the morphology and geometric distribution of micropores were analyzed via X-ray computed tomography. Moreover, the shearing evolution of the micropore structure and seepage channel was investigated to evaluate the dewatering performance of underflow slurry using a three-dimensional reconstruction approach. The results show that porosity decreases considerably under shearing. The connected-pore ratio and the average radius of the throat channel reach peak values of 0.79 and 31.38 µm, respectively, when shearing is applied for 10 min. However, the reverse seepage velocity and absolute permeability in the bed decrease to various extents after shearing. Meanwhile, the maximum flow rate reaches 1.537 µm/s and the absolute permeability increases by 14.16%. Shearing alters the formation process and the pore structure of the seepage channel. Isolated pores connect to the surrounding flocs to form branch channels, which then become the main seepage channel and create the dominant water-seepage flow channel.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 8","pages":"1538 - 1547"},"PeriodicalIF":5.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Microscale mechanism of tailing thickening in metal mines\",\"authors\":\"Huazhe Jiao, Wenbo Yang, Zhu’en Ruan, Jianxin Yu, Juanhong Liu, Yixuan Yang\",\"doi\":\"10.1007/s12613-022-2587-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water-locking flocs formed by ultrafine tailings particles will damage the thickener underflow concentration in the thickening process during paste preparation. The relationship between the mesostructure and seepage characteristics of tail mortar is typically ignored when investigating the deep dehydration stage. A shearing seepage test of an unclassified tailing–sedimentation bed was performed with copper tailings, and the morphology and geometric distribution of micropores were analyzed via X-ray computed tomography. Moreover, the shearing evolution of the micropore structure and seepage channel was investigated to evaluate the dewatering performance of underflow slurry using a three-dimensional reconstruction approach. The results show that porosity decreases considerably under shearing. The connected-pore ratio and the average radius of the throat channel reach peak values of 0.79 and 31.38 µm, respectively, when shearing is applied for 10 min. However, the reverse seepage velocity and absolute permeability in the bed decrease to various extents after shearing. Meanwhile, the maximum flow rate reaches 1.537 µm/s and the absolute permeability increases by 14.16%. Shearing alters the formation process and the pore structure of the seepage channel. Isolated pores connect to the surrounding flocs to form branch channels, which then become the main seepage channel and create the dominant water-seepage flow channel.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 8\",\"pages\":\"1538 - 1547\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-022-2587-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-022-2587-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microscale mechanism of tailing thickening in metal mines
Water-locking flocs formed by ultrafine tailings particles will damage the thickener underflow concentration in the thickening process during paste preparation. The relationship between the mesostructure and seepage characteristics of tail mortar is typically ignored when investigating the deep dehydration stage. A shearing seepage test of an unclassified tailing–sedimentation bed was performed with copper tailings, and the morphology and geometric distribution of micropores were analyzed via X-ray computed tomography. Moreover, the shearing evolution of the micropore structure and seepage channel was investigated to evaluate the dewatering performance of underflow slurry using a three-dimensional reconstruction approach. The results show that porosity decreases considerably under shearing. The connected-pore ratio and the average radius of the throat channel reach peak values of 0.79 and 31.38 µm, respectively, when shearing is applied for 10 min. However, the reverse seepage velocity and absolute permeability in the bed decrease to various extents after shearing. Meanwhile, the maximum flow rate reaches 1.537 µm/s and the absolute permeability increases by 14.16%. Shearing alters the formation process and the pore structure of the seepage channel. Isolated pores connect to the surrounding flocs to form branch channels, which then become the main seepage channel and create the dominant water-seepage flow channel.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.