中国金属矿山充填采矿研究进展与展望

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gaili Xue, Erol Yilmaz, Yongding Wang
{"title":"中国金属矿山充填采矿研究进展与展望","authors":"Gaili Xue,&nbsp;Erol Yilmaz,&nbsp;Yongding Wang","doi":"10.1007/s12613-023-2663-0","DOIUrl":null,"url":null,"abstract":"<div><p>Mining is the foundation of modern industrial development. In the context of the “carbon peaking and carbon neutrality” era, countries have put forward the development strategy of “adhering to the harmonious coexistence of humans and nature.” The ongoing progress and improvement of filling mining technology have provided significant advantages, such as “green mining, safe, efficient, and low-carbon emission,” which is crucial to the comprehensive utilization of mining solid waste, environmental protection, and safety of re-mining. This review paper describes the development history of metal mine filling mining in China and the characteristics of each stage. The excitation mechanism and current research status of producing cementitious materials from blast furnace slag and other industrial wastes are then presented, and the concept of developing cementitious materials for backfill based on the whole solid waste is proposed. The advances in the mechanical characteristics of cemented backfill are elaborated on four typical levels: static mechanics, dynamic mechanics, mechanical influencing factors, and multi-scale mechanics. The working/rheological characteristics of the filling slurry are presented, given the importance of the filling materials conveying process. Finally, the future perspectives of mining with backfill are discussed based on the features of modern filling concepts to provide the necessary theoretical research value for filling mining.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 8","pages":"1455 - 1473"},"PeriodicalIF":5.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12613-023-2663-0.pdf","citationCount":"10","resultStr":"{\"title\":\"Progress and prospects of mining with backfill in metal mines in China\",\"authors\":\"Gaili Xue,&nbsp;Erol Yilmaz,&nbsp;Yongding Wang\",\"doi\":\"10.1007/s12613-023-2663-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mining is the foundation of modern industrial development. In the context of the “carbon peaking and carbon neutrality” era, countries have put forward the development strategy of “adhering to the harmonious coexistence of humans and nature.” The ongoing progress and improvement of filling mining technology have provided significant advantages, such as “green mining, safe, efficient, and low-carbon emission,” which is crucial to the comprehensive utilization of mining solid waste, environmental protection, and safety of re-mining. This review paper describes the development history of metal mine filling mining in China and the characteristics of each stage. The excitation mechanism and current research status of producing cementitious materials from blast furnace slag and other industrial wastes are then presented, and the concept of developing cementitious materials for backfill based on the whole solid waste is proposed. The advances in the mechanical characteristics of cemented backfill are elaborated on four typical levels: static mechanics, dynamic mechanics, mechanical influencing factors, and multi-scale mechanics. The working/rheological characteristics of the filling slurry are presented, given the importance of the filling materials conveying process. Finally, the future perspectives of mining with backfill are discussed based on the features of modern filling concepts to provide the necessary theoretical research value for filling mining.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 8\",\"pages\":\"1455 - 1473\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12613-023-2663-0.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2663-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2663-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

矿业是现代工业发展的基础。在“碳调峰、碳中和”时代背景下,各国都提出了“坚持人与自然和谐共生”的发展战略。充填采矿技术的不断进步和完善,具有“绿色开采、安全高效、低碳排放”等显著优势,对矿山固废综合利用、环境保护和再开采安全至关重要。本文综述了中国金属矿山充填开采的发展历史及各个阶段的特点。介绍了利用高炉矿渣等工业废弃物生产胶凝材料的激发机理和研究现状,提出了利用全固废开发充填用胶凝材料的概念。从静态力学、动态力学、力学影响因素和多尺度力学四个典型层面阐述了胶结充填体力学特性的研究进展。考虑到填料输送过程的重要性,介绍了填料浆的工作/流变特性。最后,结合现代充填概念的特点,探讨了充填采矿的发展前景,为充填采矿提供必要的理论研究价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress and prospects of mining with backfill in metal mines in China

Mining is the foundation of modern industrial development. In the context of the “carbon peaking and carbon neutrality” era, countries have put forward the development strategy of “adhering to the harmonious coexistence of humans and nature.” The ongoing progress and improvement of filling mining technology have provided significant advantages, such as “green mining, safe, efficient, and low-carbon emission,” which is crucial to the comprehensive utilization of mining solid waste, environmental protection, and safety of re-mining. This review paper describes the development history of metal mine filling mining in China and the characteristics of each stage. The excitation mechanism and current research status of producing cementitious materials from blast furnace slag and other industrial wastes are then presented, and the concept of developing cementitious materials for backfill based on the whole solid waste is proposed. The advances in the mechanical characteristics of cemented backfill are elaborated on four typical levels: static mechanics, dynamic mechanics, mechanical influencing factors, and multi-scale mechanics. The working/rheological characteristics of the filling slurry are presented, given the importance of the filling materials conveying process. Finally, the future perspectives of mining with backfill are discussed based on the features of modern filling concepts to provide the necessary theoretical research value for filling mining.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信