S. Okukawa, M. Anzorena, S. Asano, C. A. H. Condori, E. de la Fuente, A. Gomi, K. Hibino, N. Hotta, A. Jimenez-Meza, Y. Katayose, C. Kato, S. Kato, T. Kawashima, K. Kawata, T. Koi, H. Kojima, D. Kurashige, J. Lozoya, R. Mayta, P. Miranda, K. Munakata, K. Nagaya, Y. Nakamura, Y. Nakazawa, C. Nina, M. Nishizawa, S. Ogio, M. Ohnishi, A. Oshima, M. Raljevic, H. Rivera, T. Saito, Y. Sakakibara, T. Sako, T. K. Sako, S. Shibata, A. Shiomi, M. Subieta, N. Tajima, W. Takano, M. Takita, Y. Tameda, K. Tanaka, R. Ticona, I. Toledano-Juarez, H. Tsuchiya, Y. Tsunesada, S. Udo, K. Yamazaki, Y. Yokoe
{"title":"利用带有μ子探测器的广泛空气阵雨阵列估算宇宙伽马射线通量中的强子相互作用模型依赖","authors":"S. Okukawa, M. Anzorena, S. Asano, C. A. H. Condori, E. de la Fuente, A. Gomi, K. Hibino, N. Hotta, A. Jimenez-Meza, Y. Katayose, C. Kato, S. Kato, T. Kawashima, K. Kawata, T. Koi, H. Kojima, D. Kurashige, J. Lozoya, R. Mayta, P. Miranda, K. Munakata, K. Nagaya, Y. Nakamura, Y. Nakazawa, C. Nina, M. Nishizawa, S. Ogio, M. Ohnishi, A. Oshima, M. Raljevic, H. Rivera, T. Saito, Y. Sakakibara, T. Sako, T. K. Sako, S. Shibata, A. Shiomi, M. Subieta, N. Tajima, W. Takano, M. Takita, Y. Tameda, K. Tanaka, R. Ticona, I. Toledano-Juarez, H. Tsuchiya, Y. Tsunesada, S. Udo, K. Yamazaki, Y. Yokoe","doi":"10.1007/s10686-022-09883-4","DOIUrl":null,"url":null,"abstract":"<div><p>Observation techniques of high-energy gamma rays using air showers have remarkably progressed via the Tibet AS<i>γ</i>, HAWC, and LHAASO experiments. These observations have significantly contributed to gamma-ray astronomy in the northern sky’s sub-PeV region. Moreover, in the southern sky, the ALPACA experiment is underway at 4,740 m altitude on the Chacaltaya plateau in Bolivia. This experiment estimates the gamma-ray flux from the difference between the number of on-source and off-source events by real data, utilizing the gamma-ray detection efficiency calculated through Monte Carlo simulations, which in turn depends on the hadronic interaction models. Even though the number of cosmic-ray background events can be experimentally estimated, this model dependence affects the estimation of gamma-ray detection efficiency. However, previous reports have assumed that the model dependence is negligible and have not included it in the error of gamma-ray flux estimation. Using ALPAQUITA, the prototype experiment of ALPACA, we quantitatively evaluated the model dependence on hadronic interaction models for the first time. We evaluate the model dependence on hadronic interactions as less than 3.6 % in the typical gamma-ray flux estimation performed by ALPAQUITA; this is negligible compared with other uncertainties such as energy scale uncertainty in the energy range from 6 to 300 TeV, which is dominated by the Monte Carlo statistics. This upper limit of 3.6 % model dependence is expected to apply to ALPACA.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"325 - 342"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector\",\"authors\":\"S. Okukawa, M. Anzorena, S. Asano, C. A. H. Condori, E. de la Fuente, A. Gomi, K. Hibino, N. Hotta, A. Jimenez-Meza, Y. Katayose, C. Kato, S. Kato, T. Kawashima, K. Kawata, T. Koi, H. Kojima, D. Kurashige, J. Lozoya, R. Mayta, P. Miranda, K. Munakata, K. Nagaya, Y. Nakamura, Y. Nakazawa, C. Nina, M. Nishizawa, S. Ogio, M. Ohnishi, A. Oshima, M. Raljevic, H. Rivera, T. Saito, Y. Sakakibara, T. Sako, T. K. Sako, S. Shibata, A. Shiomi, M. Subieta, N. Tajima, W. Takano, M. Takita, Y. Tameda, K. Tanaka, R. Ticona, I. Toledano-Juarez, H. Tsuchiya, Y. Tsunesada, S. Udo, K. Yamazaki, Y. Yokoe\",\"doi\":\"10.1007/s10686-022-09883-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Observation techniques of high-energy gamma rays using air showers have remarkably progressed via the Tibet AS<i>γ</i>, HAWC, and LHAASO experiments. These observations have significantly contributed to gamma-ray astronomy in the northern sky’s sub-PeV region. Moreover, in the southern sky, the ALPACA experiment is underway at 4,740 m altitude on the Chacaltaya plateau in Bolivia. This experiment estimates the gamma-ray flux from the difference between the number of on-source and off-source events by real data, utilizing the gamma-ray detection efficiency calculated through Monte Carlo simulations, which in turn depends on the hadronic interaction models. Even though the number of cosmic-ray background events can be experimentally estimated, this model dependence affects the estimation of gamma-ray detection efficiency. However, previous reports have assumed that the model dependence is negligible and have not included it in the error of gamma-ray flux estimation. Using ALPAQUITA, the prototype experiment of ALPACA, we quantitatively evaluated the model dependence on hadronic interaction models for the first time. We evaluate the model dependence on hadronic interactions as less than 3.6 % in the typical gamma-ray flux estimation performed by ALPAQUITA; this is negligible compared with other uncertainties such as energy scale uncertainty in the energy range from 6 to 300 TeV, which is dominated by the Monte Carlo statistics. This upper limit of 3.6 % model dependence is expected to apply to ALPACA.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"55 2\",\"pages\":\"325 - 342\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-022-09883-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-022-09883-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector
Observation techniques of high-energy gamma rays using air showers have remarkably progressed via the Tibet ASγ, HAWC, and LHAASO experiments. These observations have significantly contributed to gamma-ray astronomy in the northern sky’s sub-PeV region. Moreover, in the southern sky, the ALPACA experiment is underway at 4,740 m altitude on the Chacaltaya plateau in Bolivia. This experiment estimates the gamma-ray flux from the difference between the number of on-source and off-source events by real data, utilizing the gamma-ray detection efficiency calculated through Monte Carlo simulations, which in turn depends on the hadronic interaction models. Even though the number of cosmic-ray background events can be experimentally estimated, this model dependence affects the estimation of gamma-ray detection efficiency. However, previous reports have assumed that the model dependence is negligible and have not included it in the error of gamma-ray flux estimation. Using ALPAQUITA, the prototype experiment of ALPACA, we quantitatively evaluated the model dependence on hadronic interaction models for the first time. We evaluate the model dependence on hadronic interactions as less than 3.6 % in the typical gamma-ray flux estimation performed by ALPAQUITA; this is negligible compared with other uncertainties such as energy scale uncertainty in the energy range from 6 to 300 TeV, which is dominated by the Monte Carlo statistics. This upper limit of 3.6 % model dependence is expected to apply to ALPACA.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.