Shahzad Arif, Ali Javed Hashmi, Waseem Khan, Rizwana Kausar
{"title":"地球同步卫星通信场景下基于强化学习的智能无功干扰策略","authors":"Shahzad Arif, Ali Javed Hashmi, Waseem Khan, Rizwana Kausar","doi":"10.1002/sat.1418","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Reinforcement learning (RL) is being considered for future SATCOM systems due to its inherent capability to self-learn the optimum decision-making policy under different scenarios. This capability enables SATCOM systems to manage their resources judiciously and mitigate jamming attacks autonomously without prior jammer type classification. We propose a novel smart reactive SATCOM jamming approach that would not only counter these RL based anti-jamming strategies but would also be effective against conventional anti-jamming schemes, that is, FHSS and DSSS. The proposed jamming approach exploits the limitations in learning patterns of Q-learning-based RL agent and achieves effective jamming while conserving considerable amount of jamming power. To achieve this, we propose an intelligent jamming engine (IJE) along with few potent jamming algorithms and evaluate their performance in terms of throughput degradation of victim SATCOM link, jamming power conservation, and design complexity of the jammer. Software simulations successfully demonstrate the effectiveness of our proposed smart reactive jamming approach which outperforms the standard reactive jammer against RL-based antijamming schemes.</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"40 2","pages":"96-119"},"PeriodicalIF":0.9000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/sat.1418","citationCount":"3","resultStr":"{\"title\":\"A smart reactive jamming approach to counter reinforcement learning-based antijamming strategies in GEO SATCOM scenario\",\"authors\":\"Shahzad Arif, Ali Javed Hashmi, Waseem Khan, Rizwana Kausar\",\"doi\":\"10.1002/sat.1418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Reinforcement learning (RL) is being considered for future SATCOM systems due to its inherent capability to self-learn the optimum decision-making policy under different scenarios. This capability enables SATCOM systems to manage their resources judiciously and mitigate jamming attacks autonomously without prior jammer type classification. We propose a novel smart reactive SATCOM jamming approach that would not only counter these RL based anti-jamming strategies but would also be effective against conventional anti-jamming schemes, that is, FHSS and DSSS. The proposed jamming approach exploits the limitations in learning patterns of Q-learning-based RL agent and achieves effective jamming while conserving considerable amount of jamming power. To achieve this, we propose an intelligent jamming engine (IJE) along with few potent jamming algorithms and evaluate their performance in terms of throughput degradation of victim SATCOM link, jamming power conservation, and design complexity of the jammer. Software simulations successfully demonstrate the effectiveness of our proposed smart reactive jamming approach which outperforms the standard reactive jammer against RL-based antijamming schemes.</p>\\n </div>\",\"PeriodicalId\":50289,\"journal\":{\"name\":\"International Journal of Satellite Communications and Networking\",\"volume\":\"40 2\",\"pages\":\"96-119\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/sat.1418\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Satellite Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sat.1418\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1418","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A smart reactive jamming approach to counter reinforcement learning-based antijamming strategies in GEO SATCOM scenario
Reinforcement learning (RL) is being considered for future SATCOM systems due to its inherent capability to self-learn the optimum decision-making policy under different scenarios. This capability enables SATCOM systems to manage their resources judiciously and mitigate jamming attacks autonomously without prior jammer type classification. We propose a novel smart reactive SATCOM jamming approach that would not only counter these RL based anti-jamming strategies but would also be effective against conventional anti-jamming schemes, that is, FHSS and DSSS. The proposed jamming approach exploits the limitations in learning patterns of Q-learning-based RL agent and achieves effective jamming while conserving considerable amount of jamming power. To achieve this, we propose an intelligent jamming engine (IJE) along with few potent jamming algorithms and evaluate their performance in terms of throughput degradation of victim SATCOM link, jamming power conservation, and design complexity of the jammer. Software simulations successfully demonstrate the effectiveness of our proposed smart reactive jamming approach which outperforms the standard reactive jammer against RL-based antijamming schemes.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols