{"title":"土壤有机磷定量溶液31P核磁共振分析的改进:对顺磁离子响应的自旋晶格弛豫研究","authors":"Yunbin Jiang, Fengmin Zhang, Chao Ren, Wei Li","doi":"10.1186/s12932-020-00067-7","DOIUrl":null,"url":null,"abstract":"<p>Solution <sup>31</sup>P nuclear magnetic resonance (NMR) spectroscopy has been widely applied to analyze the speciation of soil organic P; however, this time-consuming technique suffers from a low analytical efficiency, because of the lack of fundamental information such as the spin–lattice relaxation (<i>T</i><sub>1</sub>) of <sup>31</sup>P nucleus for model P compounds. In this study, we for the first time determined the <i>T</i><sub>1</sub> values of twelve typical soil organic P compounds using the inversion recovery method. Furthermore, we examined the effect of co-existing paramagnetic ions (e.g., Fe<sup>3+</sup> and Mn<sup>2+</sup>) on the reduction of the <i>T</i><sub>1</sub> values of these compounds. Without the addition of paramagnetic ions, the <i>T</i><sub>1</sub> values of twelve model P compounds ranged from 0.61?s for phytic acid to 9.65?s for orthophosphate. In contrast, the presence of paramagnetic ion significantly shortened the <i>T</i><sub>1</sub> values of orthophosphate, pyrophosphate, and phytic acid to 1.29, 1.26, and 0.07?s, respectively, except that of deoxyribonucleic acid (DNA) remaining unchanged. Additionally, we evaluated the feasibility of improving the efficiency of quantitative <sup>31</sup>P NMR analysis via addition of paramagnetic ion. Results show that, after an addition of 50?mg L<sup>?1</sup> paramagnetic ions, <sup>31</sup>P NMR measurement can be 3 times more efficient, attributed to the reduced <i>T</i><sub>1</sub> and the corresponding recycle delay.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"21 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-020-00067-7","citationCount":"1","resultStr":"{\"title\":\"Improvement of quantitative solution 31P NMR analysis of soil organic P: a study of spin–lattice relaxation responding to paramagnetic ions\",\"authors\":\"Yunbin Jiang, Fengmin Zhang, Chao Ren, Wei Li\",\"doi\":\"10.1186/s12932-020-00067-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solution <sup>31</sup>P nuclear magnetic resonance (NMR) spectroscopy has been widely applied to analyze the speciation of soil organic P; however, this time-consuming technique suffers from a low analytical efficiency, because of the lack of fundamental information such as the spin–lattice relaxation (<i>T</i><sub>1</sub>) of <sup>31</sup>P nucleus for model P compounds. In this study, we for the first time determined the <i>T</i><sub>1</sub> values of twelve typical soil organic P compounds using the inversion recovery method. Furthermore, we examined the effect of co-existing paramagnetic ions (e.g., Fe<sup>3+</sup> and Mn<sup>2+</sup>) on the reduction of the <i>T</i><sub>1</sub> values of these compounds. Without the addition of paramagnetic ions, the <i>T</i><sub>1</sub> values of twelve model P compounds ranged from 0.61?s for phytic acid to 9.65?s for orthophosphate. In contrast, the presence of paramagnetic ion significantly shortened the <i>T</i><sub>1</sub> values of orthophosphate, pyrophosphate, and phytic acid to 1.29, 1.26, and 0.07?s, respectively, except that of deoxyribonucleic acid (DNA) remaining unchanged. Additionally, we evaluated the feasibility of improving the efficiency of quantitative <sup>31</sup>P NMR analysis via addition of paramagnetic ion. Results show that, after an addition of 50?mg L<sup>?1</sup> paramagnetic ions, <sup>31</sup>P NMR measurement can be 3 times more efficient, attributed to the reduced <i>T</i><sub>1</sub> and the corresponding recycle delay.</p>\",\"PeriodicalId\":12694,\"journal\":{\"name\":\"Geochemical Transactions\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12932-020-00067-7\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Transactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12932-020-00067-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s12932-020-00067-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
摘要
溶液31P核磁共振(NMR)谱已广泛应用于分析土壤有机P的形态;然而,由于缺乏模型P化合物31P核的自旋晶格弛豫(T1)等基本信息,这种耗时的技术存在分析效率低的问题。本研究首次利用反演恢复方法测定了12种典型土壤有机磷化合物的T1值。此外,我们还研究了共存的顺磁离子(如Fe3+和Mn2+)对这些化合物T1值降低的影响。在未加入顺磁离子的情况下,12种模型P化合物的T1值在0.61?S表示植酸到9.65?S代表正磷酸盐。顺磁离子的存在显著缩短了正磷酸盐、焦磷酸盐和植酸的T1值,分别为1.29、1.26和0.07?除脱氧核糖核酸(DNA)保持不变外,其余分别为s。此外,我们还评估了通过添加顺磁离子来提高31P核磁共振定量分析效率的可行性。结果表明,加50?mg L ?1顺磁离子时,31P的核磁共振测量效率可提高3倍,这归功于T1的降低和相应的循环延迟。
Improvement of quantitative solution 31P NMR analysis of soil organic P: a study of spin–lattice relaxation responding to paramagnetic ions
Solution 31P nuclear magnetic resonance (NMR) spectroscopy has been widely applied to analyze the speciation of soil organic P; however, this time-consuming technique suffers from a low analytical efficiency, because of the lack of fundamental information such as the spin–lattice relaxation (T1) of 31P nucleus for model P compounds. In this study, we for the first time determined the T1 values of twelve typical soil organic P compounds using the inversion recovery method. Furthermore, we examined the effect of co-existing paramagnetic ions (e.g., Fe3+ and Mn2+) on the reduction of the T1 values of these compounds. Without the addition of paramagnetic ions, the T1 values of twelve model P compounds ranged from 0.61?s for phytic acid to 9.65?s for orthophosphate. In contrast, the presence of paramagnetic ion significantly shortened the T1 values of orthophosphate, pyrophosphate, and phytic acid to 1.29, 1.26, and 0.07?s, respectively, except that of deoxyribonucleic acid (DNA) remaining unchanged. Additionally, we evaluated the feasibility of improving the efficiency of quantitative 31P NMR analysis via addition of paramagnetic ion. Results show that, after an addition of 50?mg L?1 paramagnetic ions, 31P NMR measurement can be 3 times more efficient, attributed to the reduced T1 and the corresponding recycle delay.
期刊介绍:
Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.