{"title":"考虑动中心距和齿隙的直齿齿轮副动态特性","authors":"Jie Liu, Shenghua Liu, Weiqiang Zhao, Lei Zhang","doi":"10.1155/2019/2040637","DOIUrl":null,"url":null,"abstract":"Effect of dynamic backlash and rotational speed is investigated on the six-degree-of-freedom model of the gear-bearing system with the time-varying meshing stiffness. The relationship between dynamic backlash and center distance can be defined clearly. The nonlinear differential equations of the model are solved by the Newmark-β method. The results show that system amplitude increases in the wake of increasing rotational speed. After reaching a certain rotational speed, the system jumps from periodic motion to chaos motion, and the effective amplitude is changed violently. Comparing the dynamic backlash with fixed backlash, the amplitude of the dynamic backlash is augmented and the frequency components are diversified. The vibration displacement is enlarged by the dynamic backlash and the chaotic behavior of the system becomes complex with increasing rotational speed. The numerical results provide a useful reference source for engineers to select rotational speed section for steady running.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2040637","citationCount":"8","resultStr":"{\"title\":\"Dynamic Characteristics of Spur Gear Pair with Dynamic Center Distance and Backlash\",\"authors\":\"Jie Liu, Shenghua Liu, Weiqiang Zhao, Lei Zhang\",\"doi\":\"10.1155/2019/2040637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effect of dynamic backlash and rotational speed is investigated on the six-degree-of-freedom model of the gear-bearing system with the time-varying meshing stiffness. The relationship between dynamic backlash and center distance can be defined clearly. The nonlinear differential equations of the model are solved by the Newmark-β method. The results show that system amplitude increases in the wake of increasing rotational speed. After reaching a certain rotational speed, the system jumps from periodic motion to chaos motion, and the effective amplitude is changed violently. Comparing the dynamic backlash with fixed backlash, the amplitude of the dynamic backlash is augmented and the frequency components are diversified. The vibration displacement is enlarged by the dynamic backlash and the chaotic behavior of the system becomes complex with increasing rotational speed. The numerical results provide a useful reference source for engineers to select rotational speed section for steady running.\",\"PeriodicalId\":46335,\"journal\":{\"name\":\"International Journal of Rotating Machinery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/2040637\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rotating Machinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/2040637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/2040637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamic Characteristics of Spur Gear Pair with Dynamic Center Distance and Backlash
Effect of dynamic backlash and rotational speed is investigated on the six-degree-of-freedom model of the gear-bearing system with the time-varying meshing stiffness. The relationship between dynamic backlash and center distance can be defined clearly. The nonlinear differential equations of the model are solved by the Newmark-β method. The results show that system amplitude increases in the wake of increasing rotational speed. After reaching a certain rotational speed, the system jumps from periodic motion to chaos motion, and the effective amplitude is changed violently. Comparing the dynamic backlash with fixed backlash, the amplitude of the dynamic backlash is augmented and the frequency components are diversified. The vibration displacement is enlarged by the dynamic backlash and the chaotic behavior of the system becomes complex with increasing rotational speed. The numerical results provide a useful reference source for engineers to select rotational speed section for steady running.
期刊介绍:
This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.