翘曲积Finsler度量中两个非黎曼曲率的等价性

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Bankteshwar Tiwari, Ranadip Gangopadhyay, Anjali Shriwastawa
{"title":"翘曲积Finsler度量中两个非黎曼曲率的等价性","authors":"Bankteshwar Tiwari,&nbsp;Ranadip Gangopadhyay,&nbsp;Anjali Shriwastawa","doi":"10.1007/s40010-023-00817-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we discuss the Busemann-Hausdorff volume form and Holmes-Thompson volume form for the warped product Finsler metrics. With the help of these volume forms we obtain the <i>E</i>-curvature and the <i>S</i>-curvature for this class of metrics. Further, we show that the notion of isotropic <i>E</i>-curvature and isotropic <i>S</i>-curvature are equivalent for this class of metrics.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Equivalence of Two Non-Riemannian Curvatures in Warped Product Finsler Metrics\",\"authors\":\"Bankteshwar Tiwari,&nbsp;Ranadip Gangopadhyay,&nbsp;Anjali Shriwastawa\",\"doi\":\"10.1007/s40010-023-00817-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we discuss the Busemann-Hausdorff volume form and Holmes-Thompson volume form for the warped product Finsler metrics. With the help of these volume forms we obtain the <i>E</i>-curvature and the <i>S</i>-curvature for this class of metrics. Further, we show that the notion of isotropic <i>E</i>-curvature and isotropic <i>S</i>-curvature are equivalent for this class of metrics.</p></div>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40010-023-00817-z\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-023-00817-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了翘曲积Finsler度量的Busemann-Hausdorff体积形式和Holmes-Thompson体积形式。借助这些体积形式,我们得到了这类度量的e曲率和s曲率。进一步,我们证明了各向同性e曲率和各向同性s曲率的概念对于这类度量是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Equivalence of Two Non-Riemannian Curvatures in Warped Product Finsler Metrics

In this paper we discuss the Busemann-Hausdorff volume form and Holmes-Thompson volume form for the warped product Finsler metrics. With the help of these volume forms we obtain the E-curvature and the S-curvature for this class of metrics. Further, we show that the notion of isotropic E-curvature and isotropic S-curvature are equivalent for this class of metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信