Hyek Jin Kwon, Moon-Yong Cha, Dokyoon Kim, Dong Kyu Kim, Min Soh, Kwangsoo Shin, Taeghwan Hyeon*, Inhee Mook-Jung*
{"title":"线粒体靶向氧化铈纳米颗粒作为阿尔茨海默病的抗氧化剂","authors":"Hyek Jin Kwon, Moon-Yong Cha, Dokyoon Kim, Dong Kyu Kim, Min Soh, Kwangsoo Shin, Taeghwan Hyeon*, Inhee Mook-Jung*","doi":"10.1021/acsnano.5b08045","DOIUrl":null,"url":null,"abstract":"<p >Mitochondrial oxidative stress is a key pathologic factor in neurodegenerative diseases, including Alzheimer’s disease. Abnormal generation of reactive oxygen species (ROS), resulting from mitochondrial dysfunction, can lead to neuronal cell death. Ceria (CeO<sub>2</sub>) nanoparticles are known to function as strong and recyclable ROS scavengers by shuttling between Ce<sup>3+</sup> and Ce<sup>4+</sup> oxidation states. Consequently, targeting ceria nanoparticles selectively to mitochondria might be a promising therapeutic approach for neurodegenerative diseases. Here, we report the design and synthesis of triphenylphosphonium-conjugated ceria nanoparticles that localize to mitochondria and suppress neuronal death in a 5XFAD transgenic Alzheimer’s disease mouse model. The triphenylphosphonium-conjugated ceria nanoparticles mitigate reactive gliosis and morphological mitochondria damage observed in these mice. Altogether, our data indicate that the triphenylphosphonium-conjugated ceria nanoparticles are a potential therapeutic candidate for mitochondrial oxidative stress in Alzheimer’s disease.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"10 2","pages":"2860–2870"},"PeriodicalIF":16.0000,"publicationDate":"2016-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acsnano.5b08045","citationCount":"410","resultStr":"{\"title\":\"Mitochondria-Targeting Ceria Nanoparticles as Antioxidants for Alzheimer’s Disease\",\"authors\":\"Hyek Jin Kwon, Moon-Yong Cha, Dokyoon Kim, Dong Kyu Kim, Min Soh, Kwangsoo Shin, Taeghwan Hyeon*, Inhee Mook-Jung*\",\"doi\":\"10.1021/acsnano.5b08045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mitochondrial oxidative stress is a key pathologic factor in neurodegenerative diseases, including Alzheimer’s disease. Abnormal generation of reactive oxygen species (ROS), resulting from mitochondrial dysfunction, can lead to neuronal cell death. Ceria (CeO<sub>2</sub>) nanoparticles are known to function as strong and recyclable ROS scavengers by shuttling between Ce<sup>3+</sup> and Ce<sup>4+</sup> oxidation states. Consequently, targeting ceria nanoparticles selectively to mitochondria might be a promising therapeutic approach for neurodegenerative diseases. Here, we report the design and synthesis of triphenylphosphonium-conjugated ceria nanoparticles that localize to mitochondria and suppress neuronal death in a 5XFAD transgenic Alzheimer’s disease mouse model. The triphenylphosphonium-conjugated ceria nanoparticles mitigate reactive gliosis and morphological mitochondria damage observed in these mice. Altogether, our data indicate that the triphenylphosphonium-conjugated ceria nanoparticles are a potential therapeutic candidate for mitochondrial oxidative stress in Alzheimer’s disease.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"10 2\",\"pages\":\"2860–2870\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2016-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acsnano.5b08045\",\"citationCount\":\"410\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5b08045\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5b08045","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mitochondria-Targeting Ceria Nanoparticles as Antioxidants for Alzheimer’s Disease
Mitochondrial oxidative stress is a key pathologic factor in neurodegenerative diseases, including Alzheimer’s disease. Abnormal generation of reactive oxygen species (ROS), resulting from mitochondrial dysfunction, can lead to neuronal cell death. Ceria (CeO2) nanoparticles are known to function as strong and recyclable ROS scavengers by shuttling between Ce3+ and Ce4+ oxidation states. Consequently, targeting ceria nanoparticles selectively to mitochondria might be a promising therapeutic approach for neurodegenerative diseases. Here, we report the design and synthesis of triphenylphosphonium-conjugated ceria nanoparticles that localize to mitochondria and suppress neuronal death in a 5XFAD transgenic Alzheimer’s disease mouse model. The triphenylphosphonium-conjugated ceria nanoparticles mitigate reactive gliosis and morphological mitochondria damage observed in these mice. Altogether, our data indicate that the triphenylphosphonium-conjugated ceria nanoparticles are a potential therapeutic candidate for mitochondrial oxidative stress in Alzheimer’s disease.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.