因子保留下数据缺失不确定性的多重归算方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-06-01 Epub Date: 2023-06-12 DOI:10.1177/00131644231178800
Yan Xia, Selim Havan
{"title":"因子保留下数据缺失不确定性的多重归算方法","authors":"Yan Xia, Selim Havan","doi":"10.1177/00131644231178800","DOIUrl":null,"url":null,"abstract":"<p><p>Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed data set and use the number of factors suggested by most of the data copies or average the correlation matrices across all data copies, followed by applying the parallel analysis to the average correlation matrix. Both approaches for pooling the results provide a single suggested number without reflecting the uncertainty introduced by missing values. The present study proposes the use of an alternative approach, which calculates the proportion of imputed data sets that result in <i>k</i> (<i>k</i> = 1, 2, 3 . . .) factors. This approach will inform applied researchers of the degree of uncertainty due to the missingness. Results from a simulation experiment show that the proposed method can more likely suggest the correct number of factors when missingness contributes to a large amount of uncertainty.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095323/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using Multiple Imputation to Account for the Uncertainty Due to Missing Data in the Context of Factor Retention.\",\"authors\":\"Yan Xia, Selim Havan\",\"doi\":\"10.1177/00131644231178800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed data set and use the number of factors suggested by most of the data copies or average the correlation matrices across all data copies, followed by applying the parallel analysis to the average correlation matrix. Both approaches for pooling the results provide a single suggested number without reflecting the uncertainty introduced by missing values. The present study proposes the use of an alternative approach, which calculates the proportion of imputed data sets that result in <i>k</i> (<i>k</i> = 1, 2, 3 . . .) factors. This approach will inform applied researchers of the degree of uncertainty due to the missingness. Results from a simulation experiment show that the proposed method can more likely suggest the correct number of factors when missingness contributes to a large amount of uncertainty.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095323/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644231178800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644231178800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

尽管并行分析已被发现是在数据完整的许多条件下确定因素数量的准确方法,但在数据缺失的情况下,它的应用是有限的。现有文献建议,在使用适当的多重插补方法后,研究人员要么对每个插补数据集进行平行分析,并使用大多数数据副本建议的因素数量,要么对所有数据副本的相关矩阵进行平均,然后对平均相关矩阵进行平行分析。两种汇集结果的方法都提供了一个单一的建议数字,而不反映缺失值带来的不确定性。本研究建议使用一种替代方法,该方法计算导致k(k=1,2,3…)个因子的估算数据集的比例。这种方法将告知应用研究人员由于缺失而产生的不确定性程度。模拟实验结果表明,当缺失导致大量不确定性时,所提出的方法更有可能提出正确的因素数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Multiple Imputation to Account for the Uncertainty Due to Missing Data in the Context of Factor Retention.

Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed data set and use the number of factors suggested by most of the data copies or average the correlation matrices across all data copies, followed by applying the parallel analysis to the average correlation matrix. Both approaches for pooling the results provide a single suggested number without reflecting the uncertainty introduced by missing values. The present study proposes the use of an alternative approach, which calculates the proportion of imputed data sets that result in k (k = 1, 2, 3 . . .) factors. This approach will inform applied researchers of the degree of uncertainty due to the missingness. Results from a simulation experiment show that the proposed method can more likely suggest the correct number of factors when missingness contributes to a large amount of uncertainty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信