AAA+ atp酶p97催化D2结构域的晶体结构揭示了一种假定的螺旋分裂-洗涤-型底物展开机制

IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
L. Stach, R. Morgan, Linda Makhlouf, A. Douangamath, F. Delft, Xiaodong Zhang, P. Freemont
{"title":"AAA+ atp酶p97催化D2结构域的晶体结构揭示了一种假定的螺旋分裂-洗涤-型底物展开机制","authors":"L. Stach, R. Morgan, Linda Makhlouf, A. Douangamath, F. Delft, Xiaodong Zhang, P. Freemont","doi":"10.1002/1873-3468.13667","DOIUrl":null,"url":null,"abstract":"Several pathologies have been associated with the AAA+ ATPase p97, an enzyme essential to protein homeostasis. Heterozygous polymorphisms in p97 have been shown to cause neurological disease, while elevated proteotoxic stress in tumours has made p97 an attractive cancer chemotherapy target. The cellular processes reliant on p97 are well described. High‐resolution structural models of its catalytic D2 domain, however, have proved elusive, as has the mechanism by which p97 converts the energy from ATP hydrolysis into mechanical force to unfold protein substrates. Here, we describe the high‐resolution structure of the p97 D2 ATPase domain. This crystal system constitutes a valuable tool for p97 inhibitor development and identifies a potentially druggable pocket in the D2 domain. In addition, its P61 symmetry suggests a mechanism for substrate unfolding by p97.","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.13667","citationCount":"6","resultStr":"{\"title\":\"Crystal structure of the catalytic D2 domain of the AAA+ ATPase p97 reveals a putative helical split‐washer‐type mechanism for substrate unfolding\",\"authors\":\"L. Stach, R. Morgan, Linda Makhlouf, A. Douangamath, F. Delft, Xiaodong Zhang, P. Freemont\",\"doi\":\"10.1002/1873-3468.13667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several pathologies have been associated with the AAA+ ATPase p97, an enzyme essential to protein homeostasis. Heterozygous polymorphisms in p97 have been shown to cause neurological disease, while elevated proteotoxic stress in tumours has made p97 an attractive cancer chemotherapy target. The cellular processes reliant on p97 are well described. High‐resolution structural models of its catalytic D2 domain, however, have proved elusive, as has the mechanism by which p97 converts the energy from ATP hydrolysis into mechanical force to unfold protein substrates. Here, we describe the high‐resolution structure of the p97 D2 ATPase domain. This crystal system constitutes a valuable tool for p97 inhibitor development and identifies a potentially druggable pocket in the D2 domain. In addition, its P61 symmetry suggests a mechanism for substrate unfolding by p97.\",\"PeriodicalId\":50454,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2019-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/1873-3468.13667\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.13667\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.13667","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

一些病理与AAA+ atp酶p97有关,这是一种蛋白质稳态所必需的酶。p97的杂合多态性已被证明可引起神经系统疾病,而肿瘤中蛋白毒性应激的升高使p97成为一个有吸引力的癌症化疗靶点。依赖于p97的细胞过程被很好地描述。然而,其催化D2结构域的高分辨率结构模型被证明是难以捉摸的,正如p97将ATP水解产生的能量转化为机械力以展开蛋白质底物的机制一样。在这里,我们描述了p97 D2 atp酶结构域的高分辨率结构。该晶体系统构成了p97抑制剂开发的有价值的工具,并确定了D2结构域中潜在的可药物口袋。此外,其P61的对称性表明了p97展开底物的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystal structure of the catalytic D2 domain of the AAA+ ATPase p97 reveals a putative helical split‐washer‐type mechanism for substrate unfolding
Several pathologies have been associated with the AAA+ ATPase p97, an enzyme essential to protein homeostasis. Heterozygous polymorphisms in p97 have been shown to cause neurological disease, while elevated proteotoxic stress in tumours has made p97 an attractive cancer chemotherapy target. The cellular processes reliant on p97 are well described. High‐resolution structural models of its catalytic D2 domain, however, have proved elusive, as has the mechanism by which p97 converts the energy from ATP hydrolysis into mechanical force to unfold protein substrates. Here, we describe the high‐resolution structure of the p97 D2 ATPase domain. This crystal system constitutes a valuable tool for p97 inhibitor development and identifies a potentially druggable pocket in the D2 domain. In addition, its P61 symmetry suggests a mechanism for substrate unfolding by p97.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Letters
FEBS Letters 生物-生化与分子生物学
CiteScore
6.60
自引率
2.90%
发文量
303
审稿时长
1 months
期刊介绍: FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信