坏负赋范Dirichlet的二分法现象

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-08-14 DOI:10.1112/mtk.12221
Dmitry Kleinbock, Anurag Rao
{"title":"坏负赋范Dirichlet的二分法现象","authors":"Dmitry Kleinbock,&nbsp;Anurag Rao","doi":"10.1112/mtk.12221","DOIUrl":null,"url":null,"abstract":"<p>Given a norm ν on <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math>, the set of ν-Dirichlet improvable numbers <math>\n <semantics>\n <msub>\n <mi>DI</mi>\n <mi>ν</mi>\n </msub>\n <annotation>$\\mathbf {DI}_\\nu$</annotation>\n </semantics></math> was defined and studied in the papers (Andersen and Duke, <i>Acta Arith</i>. 198 (2021) 37–75 and Kleinbock and Rao, <i>Internat. Math. Res. Notices</i> 2022 (2022) 5617–5657). When ν is the supremum norm, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>DI</mi>\n <mi>ν</mi>\n </msub>\n <mo>=</mo>\n <mi>BA</mi>\n <mo>∪</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\mathbf {DI}_\\nu = \\mathbf {BA}\\cup {\\mathbb {Q}}$</annotation>\n </semantics></math>, where <math>\n <semantics>\n <mi>BA</mi>\n <annotation>$\\mathbf {BA}$</annotation>\n </semantics></math> is the set of badly approximable numbers. Each of the sets <math>\n <semantics>\n <msub>\n <mi>DI</mi>\n <mi>ν</mi>\n </msub>\n <annotation>$\\mathbf {DI}_\\nu$</annotation>\n </semantics></math>, like <math>\n <semantics>\n <mi>BA</mi>\n <annotation>$\\mathbf {BA}$</annotation>\n </semantics></math>, is of measure zero and satisfies the winning property of Schmidt. Hence for every norm ν, <math>\n <semantics>\n <mrow>\n <mi>BA</mi>\n <mo>∩</mo>\n <msub>\n <mi>DI</mi>\n <mi>ν</mi>\n </msub>\n </mrow>\n <annotation>$\\mathbf {BA} \\cap \\mathbf {DI}_\\nu$</annotation>\n </semantics></math> is winning and thus has full Hausdorff dimension. In this article, we prove the following dichotomy phenomenon: either <math>\n <semantics>\n <mrow>\n <mi>BA</mi>\n <mo>⊂</mo>\n <msub>\n <mi>DI</mi>\n <mi>ν</mi>\n </msub>\n </mrow>\n <annotation>$\\mathbf {BA} \\subset \\mathbf {DI}_\\nu$</annotation>\n </semantics></math> or else <math>\n <semantics>\n <mrow>\n <mi>BA</mi>\n <mo>∖</mo>\n <msub>\n <mi>DI</mi>\n <mi>ν</mi>\n </msub>\n </mrow>\n <annotation>$\\mathbf {BA} \\setminus \\mathbf {DI}_\\nu$</annotation>\n </semantics></math> has full Hausdorff dimension. We give several examples for each of the two cases. The dichotomy is based on whether the <i>critical locus</i> of ν intersects a precompact <math>\n <semantics>\n <msub>\n <mi>g</mi>\n <mi>t</mi>\n </msub>\n <annotation>$g_t$</annotation>\n </semantics></math>-orbit, where <math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>g</mi>\n <mi>t</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace g_t\\rbrace$</annotation>\n </semantics></math> is the one-parameter diagonal subgroup of <math>\n <semantics>\n <mrow>\n <msub>\n <mo>SL</mo>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{SL}_2({\\mathbb {R}})$</annotation>\n </semantics></math> acting on the space <i>X</i> of unimodular lattices in <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math>. Thus, the aforementioned dichotomy follows from the following dynamical statement: for a lattice <math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>∈</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$\\Lambda \\in X$</annotation>\n </semantics></math>, either <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n <mi>R</mi>\n </msub>\n <mi>Λ</mi>\n </mrow>\n <annotation>$g_\\mathbb {R} \\Lambda$</annotation>\n </semantics></math> is unbounded (and then any precompact <math>\n <semantics>\n <msub>\n <mi>g</mi>\n <msub>\n <mi>R</mi>\n <mrow>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </msub>\n <annotation>$g_{\\mathbb {R}_{&gt;0}}$</annotation>\n </semantics></math>-orbit must eventually avoid a neighborhood of Λ), or not, in which case the set of lattices in <i>X</i> whose <math>\n <semantics>\n <msub>\n <mi>g</mi>\n <msub>\n <mi>R</mi>\n <mrow>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </msub>\n <annotation>$g_{\\mathbb {R}_{&gt;0}}$</annotation>\n </semantics></math>-trajectories are precompact and contain Λ in their closure has full Hausdorff dimension.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dichotomy phenomenon for bad minus normed Dirichlet\",\"authors\":\"Dmitry Kleinbock,&nbsp;Anurag Rao\",\"doi\":\"10.1112/mtk.12221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a norm ν on <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^2$</annotation>\\n </semantics></math>, the set of ν-Dirichlet improvable numbers <math>\\n <semantics>\\n <msub>\\n <mi>DI</mi>\\n <mi>ν</mi>\\n </msub>\\n <annotation>$\\\\mathbf {DI}_\\\\nu$</annotation>\\n </semantics></math> was defined and studied in the papers (Andersen and Duke, <i>Acta Arith</i>. 198 (2021) 37–75 and Kleinbock and Rao, <i>Internat. Math. Res. Notices</i> 2022 (2022) 5617–5657). When ν is the supremum norm, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>DI</mi>\\n <mi>ν</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>BA</mi>\\n <mo>∪</mo>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$\\\\mathbf {DI}_\\\\nu = \\\\mathbf {BA}\\\\cup {\\\\mathbb {Q}}$</annotation>\\n </semantics></math>, where <math>\\n <semantics>\\n <mi>BA</mi>\\n <annotation>$\\\\mathbf {BA}$</annotation>\\n </semantics></math> is the set of badly approximable numbers. Each of the sets <math>\\n <semantics>\\n <msub>\\n <mi>DI</mi>\\n <mi>ν</mi>\\n </msub>\\n <annotation>$\\\\mathbf {DI}_\\\\nu$</annotation>\\n </semantics></math>, like <math>\\n <semantics>\\n <mi>BA</mi>\\n <annotation>$\\\\mathbf {BA}$</annotation>\\n </semantics></math>, is of measure zero and satisfies the winning property of Schmidt. Hence for every norm ν, <math>\\n <semantics>\\n <mrow>\\n <mi>BA</mi>\\n <mo>∩</mo>\\n <msub>\\n <mi>DI</mi>\\n <mi>ν</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathbf {BA} \\\\cap \\\\mathbf {DI}_\\\\nu$</annotation>\\n </semantics></math> is winning and thus has full Hausdorff dimension. In this article, we prove the following dichotomy phenomenon: either <math>\\n <semantics>\\n <mrow>\\n <mi>BA</mi>\\n <mo>⊂</mo>\\n <msub>\\n <mi>DI</mi>\\n <mi>ν</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathbf {BA} \\\\subset \\\\mathbf {DI}_\\\\nu$</annotation>\\n </semantics></math> or else <math>\\n <semantics>\\n <mrow>\\n <mi>BA</mi>\\n <mo>∖</mo>\\n <msub>\\n <mi>DI</mi>\\n <mi>ν</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathbf {BA} \\\\setminus \\\\mathbf {DI}_\\\\nu$</annotation>\\n </semantics></math> has full Hausdorff dimension. We give several examples for each of the two cases. The dichotomy is based on whether the <i>critical locus</i> of ν intersects a precompact <math>\\n <semantics>\\n <msub>\\n <mi>g</mi>\\n <mi>t</mi>\\n </msub>\\n <annotation>$g_t$</annotation>\\n </semantics></math>-orbit, where <math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>g</mi>\\n <mi>t</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace g_t\\\\rbrace$</annotation>\\n </semantics></math> is the one-parameter diagonal subgroup of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>SL</mo>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{SL}_2({\\\\mathbb {R}})$</annotation>\\n </semantics></math> acting on the space <i>X</i> of unimodular lattices in <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^2$</annotation>\\n </semantics></math>. Thus, the aforementioned dichotomy follows from the following dynamical statement: for a lattice <math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>∈</mo>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$\\\\Lambda \\\\in X$</annotation>\\n </semantics></math>, either <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>g</mi>\\n <mi>R</mi>\\n </msub>\\n <mi>Λ</mi>\\n </mrow>\\n <annotation>$g_\\\\mathbb {R} \\\\Lambda$</annotation>\\n </semantics></math> is unbounded (and then any precompact <math>\\n <semantics>\\n <msub>\\n <mi>g</mi>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </msub>\\n <annotation>$g_{\\\\mathbb {R}_{&gt;0}}$</annotation>\\n </semantics></math>-orbit must eventually avoid a neighborhood of Λ), or not, in which case the set of lattices in <i>X</i> whose <math>\\n <semantics>\\n <msub>\\n <mi>g</mi>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </msub>\\n <annotation>$g_{\\\\mathbb {R}_{&gt;0}}$</annotation>\\n </semantics></math>-trajectories are precompact and contain Λ in their closure has full Hausdorff dimension.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12221\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在给定范数Γon的情况下,论文(Andersen和Duke,Acta Arith.198(2021)37-75以及Kleinbok和Rao,Internalt)定义并研究了一组Γ‐Dirichlet可改进数。数学Res.Notices 2022(2022)5617-5657)。当Γ是上确界范数时,其中是差逼近数的集合。每个集合,比如,都是零测度的,并且满足施密特的获胜性质。因此,对于每一个范数Γ,都是胜利的,因此具有全豪斯多夫维数。在本文中,我们证明了以下二分法现象:非此即彼具有全豪斯多夫维数。我们分别为这两种情况举了几个例子。该二分法基于Γ的临界轨迹是否与预压缩轨道相交,其中是作用在中的幺模格的空间X上的单参数对角子群。因此,上述二分法来自以下动力学陈述:对于一个晶格,要么是无界的(然后任何预压缩轨道最终都必须避开∧的邻域),要么不是,在这种情况下,X中轨道是预压缩的并在其闭包中包含∧的格集具有全豪斯多夫维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dichotomy phenomenon for bad minus normed Dirichlet

Given a norm ν on R 2 $\mathbb {R}^2$ , the set of ν-Dirichlet improvable numbers DI ν $\mathbf {DI}_\nu$ was defined and studied in the papers (Andersen and Duke, Acta Arith. 198 (2021) 37–75 and Kleinbock and Rao, Internat. Math. Res. Notices 2022 (2022) 5617–5657). When ν is the supremum norm, DI ν = BA Q $\mathbf {DI}_\nu = \mathbf {BA}\cup {\mathbb {Q}}$ , where BA $\mathbf {BA}$ is the set of badly approximable numbers. Each of the sets DI ν $\mathbf {DI}_\nu$ , like BA $\mathbf {BA}$ , is of measure zero and satisfies the winning property of Schmidt. Hence for every norm ν, BA DI ν $\mathbf {BA} \cap \mathbf {DI}_\nu$ is winning and thus has full Hausdorff dimension. In this article, we prove the following dichotomy phenomenon: either BA DI ν $\mathbf {BA} \subset \mathbf {DI}_\nu$ or else BA DI ν $\mathbf {BA} \setminus \mathbf {DI}_\nu$ has full Hausdorff dimension. We give several examples for each of the two cases. The dichotomy is based on whether the critical locus of ν intersects a precompact g t $g_t$ -orbit, where { g t } $\lbrace g_t\rbrace$ is the one-parameter diagonal subgroup of SL 2 ( R ) $\operatorname{SL}_2({\mathbb {R}})$ acting on the space X of unimodular lattices in R 2 $\mathbb {R}^2$ . Thus, the aforementioned dichotomy follows from the following dynamical statement: for a lattice Λ X $\Lambda \in X$ , either g R Λ $g_\mathbb {R} \Lambda$ is unbounded (and then any precompact g R > 0 $g_{\mathbb {R}_{>0}}$ -orbit must eventually avoid a neighborhood of Λ), or not, in which case the set of lattices in X whose g R > 0 $g_{\mathbb {R}_{>0}}$ -trajectories are precompact and contain Λ in their closure has full Hausdorff dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信