Wei Shao , Yu Zhang , Pengfei Xiao , Kyle Kai Qin , Mohammad Saiedur Rahaman , Jeffrey Chan , Bin Guo , Andy Song , Flora D. Salim
{"title":"用于停车占用预测的可转移上下文特征聚类","authors":"Wei Shao , Yu Zhang , Pengfei Xiao , Kyle Kai Qin , Mohammad Saiedur Rahaman , Jeffrey Chan , Bin Guo , Andy Song , Flora D. Salim","doi":"10.1016/j.pmcj.2023.101831","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, real-time parking availability prediction has attracted much attention since the rapid development of sensor technologies and urbanisation. Most existing works have applied various models to predict long and short-term parking occupancy using historical records. However, historical records are not available for many real-world scenarios, such as <em>new urban areas</em><span>, where parking lots are fast adjusted and extended. In this paper, we aim to predict parking occupancy using historical data in other areas and contextual information within the targeted area that lacks historical data. We propose a two-step framework to first learn the important contextual features from areas where parking records already existed. Then we transfer these features to the other new areas without historical data records. Through conducting a real-world dataset with various clustering methods combined with different regression models, we observe that multiple contextual features are likely to influence parking availability prediction. We find the best combination (i.e., </span><span><math><mi>k</mi></math></span><span>-shape clustering algorithm<span> and LSTM regression model) to build parking occupancy prediction model based on the subsequent quantitative correlation analysis between contextual features and parking occupancy. The experimental results show that (1) the conventional internal clustering evaluation does not work well for spatio-temporal data clustering for the prediction purpose; (2) our proposed approach achieves approximately 3% error rate in 30 minutes of prediction, which is significantly better than the estimation of the occupancy rate using the rate in the adjacent regions (13.3%).</span></span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"97 ","pages":"Article 101831"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transferrable contextual feature clusters for parking occupancy prediction\",\"authors\":\"Wei Shao , Yu Zhang , Pengfei Xiao , Kyle Kai Qin , Mohammad Saiedur Rahaman , Jeffrey Chan , Bin Guo , Andy Song , Flora D. Salim\",\"doi\":\"10.1016/j.pmcj.2023.101831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, real-time parking availability prediction has attracted much attention since the rapid development of sensor technologies and urbanisation. Most existing works have applied various models to predict long and short-term parking occupancy using historical records. However, historical records are not available for many real-world scenarios, such as <em>new urban areas</em><span>, where parking lots are fast adjusted and extended. In this paper, we aim to predict parking occupancy using historical data in other areas and contextual information within the targeted area that lacks historical data. We propose a two-step framework to first learn the important contextual features from areas where parking records already existed. Then we transfer these features to the other new areas without historical data records. Through conducting a real-world dataset with various clustering methods combined with different regression models, we observe that multiple contextual features are likely to influence parking availability prediction. We find the best combination (i.e., </span><span><math><mi>k</mi></math></span><span>-shape clustering algorithm<span> and LSTM regression model) to build parking occupancy prediction model based on the subsequent quantitative correlation analysis between contextual features and parking occupancy. The experimental results show that (1) the conventional internal clustering evaluation does not work well for spatio-temporal data clustering for the prediction purpose; (2) our proposed approach achieves approximately 3% error rate in 30 minutes of prediction, which is significantly better than the estimation of the occupancy rate using the rate in the adjacent regions (13.3%).</span></span></p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":\"97 \",\"pages\":\"Article 101831\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119223000895\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223000895","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Transferrable contextual feature clusters for parking occupancy prediction
Recently, real-time parking availability prediction has attracted much attention since the rapid development of sensor technologies and urbanisation. Most existing works have applied various models to predict long and short-term parking occupancy using historical records. However, historical records are not available for many real-world scenarios, such as new urban areas, where parking lots are fast adjusted and extended. In this paper, we aim to predict parking occupancy using historical data in other areas and contextual information within the targeted area that lacks historical data. We propose a two-step framework to first learn the important contextual features from areas where parking records already existed. Then we transfer these features to the other new areas without historical data records. Through conducting a real-world dataset with various clustering methods combined with different regression models, we observe that multiple contextual features are likely to influence parking availability prediction. We find the best combination (i.e., -shape clustering algorithm and LSTM regression model) to build parking occupancy prediction model based on the subsequent quantitative correlation analysis between contextual features and parking occupancy. The experimental results show that (1) the conventional internal clustering evaluation does not work well for spatio-temporal data clustering for the prediction purpose; (2) our proposed approach achieves approximately 3% error rate in 30 minutes of prediction, which is significantly better than the estimation of the occupancy rate using the rate in the adjacent regions (13.3%).
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.