Weixing Chen, Wen Yu, Tong Xiaochuan, Lin Chaoxiong, Li Jiang, Wang Shuyou, Xie Wei, Mao Lifeng, Xianchao Zhao, W. Zhang, Feng Gao
{"title":"舰载Stewart平台波浪补偿动力学建模及模态空间控制策略","authors":"Weixing Chen, Wen Yu, Tong Xiaochuan, Lin Chaoxiong, Li Jiang, Wang Shuyou, Xie Wei, Mao Lifeng, Xianchao Zhao, W. Zhang, Feng Gao","doi":"10.1115/1.4062177","DOIUrl":null,"url":null,"abstract":"\n The ship-borne Stewart platform can compensate for the six-degree-of-freedom motion generated by the ship, which improves the reliability and safety of offshore operations and increases the executable window period. The heavy and off-center load of the gangway significantly influences the high-precision compensation control of the platform. Besides, the gangway assembled on the platform vibrates easily due to its low natural frequency which requires high dynamic performance of the compensating. To deal with the problem mentioned, the modal space control strategy is introduced to fully consider the inertia characteristics. Firstly, based on Kane's method, the complete dynamic model considering the ship's motion and actuator inertia is established. Then, the modal space PD controller (MSPDC) and the modal space sliding mode controller (MSSMC) are designed based on modal theory. Finally, simulations are carried out to show the advantages of the proposed model and the advantages of proposed controllers in compensation accuracy and anti-interference ability. Furthermore, The Significant Compensation Rate (SCR) is proposed to evaluate the six-DOF compensation accuracy. Compared with the PD controller with gravity compensation (PDCGC), the position SCR of MSSMC is increased from 95.37 % to 99.28 %, and the angle SCR from 85.57 % to 99.65 %.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics modeling and modal space control strategy of ship-borne Stewart platform for wave compensation\",\"authors\":\"Weixing Chen, Wen Yu, Tong Xiaochuan, Lin Chaoxiong, Li Jiang, Wang Shuyou, Xie Wei, Mao Lifeng, Xianchao Zhao, W. Zhang, Feng Gao\",\"doi\":\"10.1115/1.4062177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The ship-borne Stewart platform can compensate for the six-degree-of-freedom motion generated by the ship, which improves the reliability and safety of offshore operations and increases the executable window period. The heavy and off-center load of the gangway significantly influences the high-precision compensation control of the platform. Besides, the gangway assembled on the platform vibrates easily due to its low natural frequency which requires high dynamic performance of the compensating. To deal with the problem mentioned, the modal space control strategy is introduced to fully consider the inertia characteristics. Firstly, based on Kane's method, the complete dynamic model considering the ship's motion and actuator inertia is established. Then, the modal space PD controller (MSPDC) and the modal space sliding mode controller (MSSMC) are designed based on modal theory. Finally, simulations are carried out to show the advantages of the proposed model and the advantages of proposed controllers in compensation accuracy and anti-interference ability. Furthermore, The Significant Compensation Rate (SCR) is proposed to evaluate the six-DOF compensation accuracy. Compared with the PD controller with gravity compensation (PDCGC), the position SCR of MSSMC is increased from 95.37 % to 99.28 %, and the angle SCR from 85.57 % to 99.65 %.\",\"PeriodicalId\":49155,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062177\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062177","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamics modeling and modal space control strategy of ship-borne Stewart platform for wave compensation
The ship-borne Stewart platform can compensate for the six-degree-of-freedom motion generated by the ship, which improves the reliability and safety of offshore operations and increases the executable window period. The heavy and off-center load of the gangway significantly influences the high-precision compensation control of the platform. Besides, the gangway assembled on the platform vibrates easily due to its low natural frequency which requires high dynamic performance of the compensating. To deal with the problem mentioned, the modal space control strategy is introduced to fully consider the inertia characteristics. Firstly, based on Kane's method, the complete dynamic model considering the ship's motion and actuator inertia is established. Then, the modal space PD controller (MSPDC) and the modal space sliding mode controller (MSSMC) are designed based on modal theory. Finally, simulations are carried out to show the advantages of the proposed model and the advantages of proposed controllers in compensation accuracy and anti-interference ability. Furthermore, The Significant Compensation Rate (SCR) is proposed to evaluate the six-DOF compensation accuracy. Compared with the PD controller with gravity compensation (PDCGC), the position SCR of MSSMC is increased from 95.37 % to 99.28 %, and the angle SCR from 85.57 % to 99.65 %.
期刊介绍:
Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.