印楝籽油和印楝皮提取物对铜绿假单胞菌和金黄色葡萄球菌浮游和建立生物膜生长的浓度依赖性

IF 0.7 Q4 MICROBIOLOGY
R. Katiyar, Ekta Khare, S. Kaistha
{"title":"印楝籽油和印楝皮提取物对铜绿假单胞菌和金黄色葡萄球菌浮游和建立生物膜生长的浓度依赖性","authors":"R. Katiyar, Ekta Khare, S. Kaistha","doi":"10.22207/jpam.17.3.30","DOIUrl":null,"url":null,"abstract":"Azadirachta indica Juss (Neem) is well documented for its antimicrobial activity. The effect of varying concentrations (0.1 to 50% v/v) of Azadirachta indica derived neem seed oil (NSO), neem seed oil with tween 20 and neem bark extract was evaluated on planktonic, biofilm formation and mature biofilms of multiple drug resistant Pseudomonas aeruginosa ATCC 15442 and Staphylococcus aureus ATCC 25923 using the crystal violet assay and scanning electron microscopy. NSO showed antimicrobial activity at 25% v/v for P. aeruginosa but not S. aureus in zone of inhibition assay. Neem bark extract on the contrary showed antimicrobial activity against both the isolates at 50% v/v concentrations. Interestingly, in biofilm formation assay, low concentrations of NSO (3.5 to 0.2% v/v) induced biofilm formation while inhibition of both planktonic and biofilm was seen in concentration dependent manner from 12.5% v/v onwards. Complex of NSO and tween in comparison of NSO alone caused low induction in S.aureus biofilm formation, while inhibiting biofilm formation of P. aeruginosa at all the concentrations. In biofilm eradication assay, NSO induced biofilm of both P. aeruginosa (50 to 0.1%v/v) and S. aureus (50 to 3.13%v/v). Eradication effect of neem bark extract was found on P. aeruginosa biofilm in a dose dependent fashion from 50 to 20% v/v followed by 0.2 to 0.1%v/v concentration respectively. S. aureus biofilm were eradicated at 50 to 25%v/v concentrations. At low concentrations, both the neem derivatives induced biofilm mediated growth of the pathogenic organisms. The data also indicate that neem seed oil was more effective against Gram negative P. aeruginosa while neem bark extract was effective against Gram positive S. aureus. This study highlights the crucial but variable effects of concentration dependent effect of phytochemicals and their composition on biofilm induction as well as eradication, the primary growth form in clinical settings. This challenges the notion that all herbal products are safe as antimicrobial activities differ as per microbial growth modes. Hence, concentration dependent effect of medicinal plant derived products requires thorough investigation prior to their use as antimicrobial agents.","PeriodicalId":16968,"journal":{"name":"Journal of Pure and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration Dependent Effect of Azadirachta indica (Neem) Seed Oil and Neem Bark extract on Planktonic and Established Biofilm Growth of Pseudomonas aeruginosa and Staphylococcus aureus\",\"authors\":\"R. Katiyar, Ekta Khare, S. Kaistha\",\"doi\":\"10.22207/jpam.17.3.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Azadirachta indica Juss (Neem) is well documented for its antimicrobial activity. The effect of varying concentrations (0.1 to 50% v/v) of Azadirachta indica derived neem seed oil (NSO), neem seed oil with tween 20 and neem bark extract was evaluated on planktonic, biofilm formation and mature biofilms of multiple drug resistant Pseudomonas aeruginosa ATCC 15442 and Staphylococcus aureus ATCC 25923 using the crystal violet assay and scanning electron microscopy. NSO showed antimicrobial activity at 25% v/v for P. aeruginosa but not S. aureus in zone of inhibition assay. Neem bark extract on the contrary showed antimicrobial activity against both the isolates at 50% v/v concentrations. Interestingly, in biofilm formation assay, low concentrations of NSO (3.5 to 0.2% v/v) induced biofilm formation while inhibition of both planktonic and biofilm was seen in concentration dependent manner from 12.5% v/v onwards. Complex of NSO and tween in comparison of NSO alone caused low induction in S.aureus biofilm formation, while inhibiting biofilm formation of P. aeruginosa at all the concentrations. In biofilm eradication assay, NSO induced biofilm of both P. aeruginosa (50 to 0.1%v/v) and S. aureus (50 to 3.13%v/v). Eradication effect of neem bark extract was found on P. aeruginosa biofilm in a dose dependent fashion from 50 to 20% v/v followed by 0.2 to 0.1%v/v concentration respectively. S. aureus biofilm were eradicated at 50 to 25%v/v concentrations. At low concentrations, both the neem derivatives induced biofilm mediated growth of the pathogenic organisms. The data also indicate that neem seed oil was more effective against Gram negative P. aeruginosa while neem bark extract was effective against Gram positive S. aureus. This study highlights the crucial but variable effects of concentration dependent effect of phytochemicals and their composition on biofilm induction as well as eradication, the primary growth form in clinical settings. This challenges the notion that all herbal products are safe as antimicrobial activities differ as per microbial growth modes. Hence, concentration dependent effect of medicinal plant derived products requires thorough investigation prior to their use as antimicrobial agents.\",\"PeriodicalId\":16968,\"journal\":{\"name\":\"Journal of Pure and Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22207/jpam.17.3.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22207/jpam.17.3.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

印楝(印楝)具有良好的抗菌活性。采用结晶紫法和扫描电镜观察不同浓度(0.1 ~ 50% v/v)印楝籽油、印楝籽油加20和印楝树皮提取物对多重耐药铜绿假单胞菌ATCC 15442和金黄色葡萄球菌ATCC 25923的浮游、生物膜形成和成熟生物膜的影响。NSO在25% v/v时对铜绿假单胞菌有抑菌活性,对金黄色葡萄球菌无抑菌活性。而印楝树皮提取物在50% v/v浓度下对两种菌株均有抑菌活性。有趣的是,在生物膜形成试验中,低浓度的NSO(3.5至0.2% v/v)诱导生物膜形成,而浮游生物和生物膜的抑制作用在12.5% v/v以上呈浓度依赖性。NSO与tween复合物对金黄色葡萄球菌生物膜形成的诱导作用较低,而在所有浓度下均抑制铜绿假单胞菌生物膜的形成。在生物膜根除实验中,NSO诱导铜绿假单胞菌(50 ~ 0.1%v/v)和金黄色葡萄球菌(50 ~ 3.13%v/v)形成生物膜。在50 ~ 20% v/v和0.2 ~ 0.1%v/v浓度范围内,印楝树皮提取物对铜绿假单胞菌生物膜的清除效果呈剂量依赖性。金黄色葡萄球菌生物膜在50 ~ 25%v/v浓度下被根除。在低浓度下,这两种楝树衍生物都能诱导生物膜介导的病原生物生长。结果表明,印楝籽油对革兰氏阴性铜绿假单胞菌更有效,而印楝树皮提取物对革兰氏阳性金黄色葡萄球菌更有效。这项研究强调了植物化学物质及其组成对生物膜诱导和根除的浓度依赖效应的关键但可变的影响,生物膜是临床环境中的主要生长形式。这挑战了所有草药产品都是安全的概念,因为微生物生长模式不同,抗菌活性也不同。因此,药用植物衍生产品的浓度依赖效应需要在用作抗菌药物之前进行彻底的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentration Dependent Effect of Azadirachta indica (Neem) Seed Oil and Neem Bark extract on Planktonic and Established Biofilm Growth of Pseudomonas aeruginosa and Staphylococcus aureus
Azadirachta indica Juss (Neem) is well documented for its antimicrobial activity. The effect of varying concentrations (0.1 to 50% v/v) of Azadirachta indica derived neem seed oil (NSO), neem seed oil with tween 20 and neem bark extract was evaluated on planktonic, biofilm formation and mature biofilms of multiple drug resistant Pseudomonas aeruginosa ATCC 15442 and Staphylococcus aureus ATCC 25923 using the crystal violet assay and scanning electron microscopy. NSO showed antimicrobial activity at 25% v/v for P. aeruginosa but not S. aureus in zone of inhibition assay. Neem bark extract on the contrary showed antimicrobial activity against both the isolates at 50% v/v concentrations. Interestingly, in biofilm formation assay, low concentrations of NSO (3.5 to 0.2% v/v) induced biofilm formation while inhibition of both planktonic and biofilm was seen in concentration dependent manner from 12.5% v/v onwards. Complex of NSO and tween in comparison of NSO alone caused low induction in S.aureus biofilm formation, while inhibiting biofilm formation of P. aeruginosa at all the concentrations. In biofilm eradication assay, NSO induced biofilm of both P. aeruginosa (50 to 0.1%v/v) and S. aureus (50 to 3.13%v/v). Eradication effect of neem bark extract was found on P. aeruginosa biofilm in a dose dependent fashion from 50 to 20% v/v followed by 0.2 to 0.1%v/v concentration respectively. S. aureus biofilm were eradicated at 50 to 25%v/v concentrations. At low concentrations, both the neem derivatives induced biofilm mediated growth of the pathogenic organisms. The data also indicate that neem seed oil was more effective against Gram negative P. aeruginosa while neem bark extract was effective against Gram positive S. aureus. This study highlights the crucial but variable effects of concentration dependent effect of phytochemicals and their composition on biofilm induction as well as eradication, the primary growth form in clinical settings. This challenges the notion that all herbal products are safe as antimicrobial activities differ as per microbial growth modes. Hence, concentration dependent effect of medicinal plant derived products requires thorough investigation prior to their use as antimicrobial agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pure and Applied Microbiology
Journal of Pure and Applied Microbiology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
2.00
自引率
0.00%
发文量
266
审稿时长
11 months
期刊介绍: Journal of Pure and Applied Microbiology (JPAM) is a peer-reviewed, open access international journal of microbiology aims to advance and disseminate research among scientists, academics, clinicians and microbiologists around the world. JPAM publishes high-quality research in all aspects of microbiology in both online and print form on quarterly basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信