简并Clifford几何代数中的若干李群

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Ekaterina Filimoshina, Dmitry Shirokov
{"title":"简并Clifford几何代数中的若干李群","authors":"Ekaterina Filimoshina,&nbsp;Dmitry Shirokov","doi":"10.1007/s00006-023-01290-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce and study five families of Lie groups in degenerate Clifford geometric algebras. These Lie groups preserve the even and odd subspaces and some other subspaces under the adjoint representation and the twisted adjoint representation. The considered Lie groups contain degenerate spin groups, Lipschitz groups, and Clifford groups as subgroups in the case of arbitrary dimension and signature. The considered Lie groups can be of interest for various applications in physics, engineering, and computer science.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"33 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-023-01290-y.pdf","citationCount":"0","resultStr":"{\"title\":\"On Some Lie Groups in Degenerate Clifford Geometric Algebras\",\"authors\":\"Ekaterina Filimoshina,&nbsp;Dmitry Shirokov\",\"doi\":\"10.1007/s00006-023-01290-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce and study five families of Lie groups in degenerate Clifford geometric algebras. These Lie groups preserve the even and odd subspaces and some other subspaces under the adjoint representation and the twisted adjoint representation. The considered Lie groups contain degenerate spin groups, Lipschitz groups, and Clifford groups as subgroups in the case of arbitrary dimension and signature. The considered Lie groups can be of interest for various applications in physics, engineering, and computer science.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-023-01290-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-023-01290-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01290-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并研究了退化Clifford几何代数中的五个李群族。这些李群在伴随表示和扭曲伴随表示下保留了偶、奇子空间和其他一些子空间。在任意维数和特征的情况下,所考虑的李群包含退化的自旋群、Lipschitz群和Clifford群作为子群。所考虑的李群在物理、工程和计算机科学中的各种应用都可能引起兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some Lie Groups in Degenerate Clifford Geometric Algebras

In this paper, we introduce and study five families of Lie groups in degenerate Clifford geometric algebras. These Lie groups preserve the even and odd subspaces and some other subspaces under the adjoint representation and the twisted adjoint representation. The considered Lie groups contain degenerate spin groups, Lipschitz groups, and Clifford groups as subgroups in the case of arbitrary dimension and signature. The considered Lie groups can be of interest for various applications in physics, engineering, and computer science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信