{"title":"简并Clifford几何代数中的若干李群","authors":"Ekaterina Filimoshina, Dmitry Shirokov","doi":"10.1007/s00006-023-01290-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce and study five families of Lie groups in degenerate Clifford geometric algebras. These Lie groups preserve the even and odd subspaces and some other subspaces under the adjoint representation and the twisted adjoint representation. The considered Lie groups contain degenerate spin groups, Lipschitz groups, and Clifford groups as subgroups in the case of arbitrary dimension and signature. The considered Lie groups can be of interest for various applications in physics, engineering, and computer science.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"33 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-023-01290-y.pdf","citationCount":"0","resultStr":"{\"title\":\"On Some Lie Groups in Degenerate Clifford Geometric Algebras\",\"authors\":\"Ekaterina Filimoshina, Dmitry Shirokov\",\"doi\":\"10.1007/s00006-023-01290-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce and study five families of Lie groups in degenerate Clifford geometric algebras. These Lie groups preserve the even and odd subspaces and some other subspaces under the adjoint representation and the twisted adjoint representation. The considered Lie groups contain degenerate spin groups, Lipschitz groups, and Clifford groups as subgroups in the case of arbitrary dimension and signature. The considered Lie groups can be of interest for various applications in physics, engineering, and computer science.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-023-01290-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-023-01290-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01290-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On Some Lie Groups in Degenerate Clifford Geometric Algebras
In this paper, we introduce and study five families of Lie groups in degenerate Clifford geometric algebras. These Lie groups preserve the even and odd subspaces and some other subspaces under the adjoint representation and the twisted adjoint representation. The considered Lie groups contain degenerate spin groups, Lipschitz groups, and Clifford groups as subgroups in the case of arbitrary dimension and signature. The considered Lie groups can be of interest for various applications in physics, engineering, and computer science.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.