基于飞机场景匹配的地球中心角阈值估计及姿态解算测量模型构建方法

IF 2.5 4区 综合性期刊 Q2 CHEMISTRY, MULTIDISCIPLINARY
Haiqiao Liu, Zichao Gong, Taixin Liu, Jing Dong
{"title":"基于飞机场景匹配的地球中心角阈值估计及姿态解算测量模型构建方法","authors":"Haiqiao Liu, Zichao Gong, Taixin Liu, Jing Dong","doi":"10.3390/app131810051","DOIUrl":null,"url":null,"abstract":"To address the challenge of solving aircraft’s visual navigation results using scene matching, this paper introduces the spherical EPnP positioning posture-solving method, which incorporates the threshold value for the central angle and the construction of a measurement model. The detailed steps are as follows: Firstly, the positioning coordinate model of the Earth’s surface is constructed to ensure the expression of the three-dimensional coordinates of the Earth’s surface. The positioning is then solved by employing the EPnP positioning posture-solving algorithm on the constructed data model. Secondly, by comparing and analyzing the positioning posture values of approximate plane coordinates, the critical value is determined, which serves as a reference for plane calculations. Lastly, a theoretical measurement model for visual height and central angle is constructed, taking into account the decided central angle threshold value. The simulation experiment demonstrates that using spherical coordinates as input results in an average positioning precision that is 16.42 percent higher compared to using plane coordinates as input. When the central angle is less than 0.5 degrees and the surface area is smaller than 558502 square meters, the positioning precision of plane coordinates is comparable to that of spherical coordinates. In such instances, the sphere can be approximated as flat. The findings of this study provide important theoretical guidance for further research on scene-matching positioning posture solving. These results hold significant implications for both theoretical research and engineering applications.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Earth’s Central Angle Threshold and Measurement Model Construction Method for Pose and Attitude Solution Based on Aircraft Scene Matching\",\"authors\":\"Haiqiao Liu, Zichao Gong, Taixin Liu, Jing Dong\",\"doi\":\"10.3390/app131810051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the challenge of solving aircraft’s visual navigation results using scene matching, this paper introduces the spherical EPnP positioning posture-solving method, which incorporates the threshold value for the central angle and the construction of a measurement model. The detailed steps are as follows: Firstly, the positioning coordinate model of the Earth’s surface is constructed to ensure the expression of the three-dimensional coordinates of the Earth’s surface. The positioning is then solved by employing the EPnP positioning posture-solving algorithm on the constructed data model. Secondly, by comparing and analyzing the positioning posture values of approximate plane coordinates, the critical value is determined, which serves as a reference for plane calculations. Lastly, a theoretical measurement model for visual height and central angle is constructed, taking into account the decided central angle threshold value. The simulation experiment demonstrates that using spherical coordinates as input results in an average positioning precision that is 16.42 percent higher compared to using plane coordinates as input. When the central angle is less than 0.5 degrees and the surface area is smaller than 558502 square meters, the positioning precision of plane coordinates is comparable to that of spherical coordinates. In such instances, the sphere can be approximated as flat. The findings of this study provide important theoretical guidance for further research on scene-matching positioning posture solving. These results hold significant implications for both theoretical research and engineering applications.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app131810051\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810051","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决使用场景匹配求解飞机视觉导航结果的挑战,本文介绍了球形EPnP定位姿态求解方法,该方法结合了中心角的阈值和测量模型的构建。具体步骤如下:首先,构建地表定位坐标模型,保证地表三维坐标的表达。然后通过在所构建的数据模型上采用EPnP定位姿势求解算法来求解定位。其次,通过比较分析近似平面坐标的定位姿态值,确定了临界值,为平面计算提供参考。最后,在考虑所确定的中心角阈值的情况下,建立了视觉高度和中心角的理论测量模型。仿真实验表明,使用球面坐标作为输入的平均定位精度比使用平面坐标作为输入高16.42%。当中心角小于0.5度,表面积小于558502平方米时,平面坐标的定位精度与球面坐标相当。在这种情况下,球体可以近似为平面。本研究的发现为场景匹配定位姿态求解的进一步研究提供了重要的理论指导。这些结果对理论研究和工程应用都具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Earth’s Central Angle Threshold and Measurement Model Construction Method for Pose and Attitude Solution Based on Aircraft Scene Matching
To address the challenge of solving aircraft’s visual navigation results using scene matching, this paper introduces the spherical EPnP positioning posture-solving method, which incorporates the threshold value for the central angle and the construction of a measurement model. The detailed steps are as follows: Firstly, the positioning coordinate model of the Earth’s surface is constructed to ensure the expression of the three-dimensional coordinates of the Earth’s surface. The positioning is then solved by employing the EPnP positioning posture-solving algorithm on the constructed data model. Secondly, by comparing and analyzing the positioning posture values of approximate plane coordinates, the critical value is determined, which serves as a reference for plane calculations. Lastly, a theoretical measurement model for visual height and central angle is constructed, taking into account the decided central angle threshold value. The simulation experiment demonstrates that using spherical coordinates as input results in an average positioning precision that is 16.42 percent higher compared to using plane coordinates as input. When the central angle is less than 0.5 degrees and the surface area is smaller than 558502 square meters, the positioning precision of plane coordinates is comparable to that of spherical coordinates. In such instances, the sphere can be approximated as flat. The findings of this study provide important theoretical guidance for further research on scene-matching positioning posture solving. These results hold significant implications for both theoretical research and engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Sciences-Basel
Applied Sciences-Basel CHEMISTRY, MULTIDISCIPLINARYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.30
自引率
11.10%
发文量
10882
期刊介绍: Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信