{"title":"El Niño和海洋热浪:俄勒冈州岩石潮间带群落在地方到区域尺度上的生态影响","authors":"Barbara J. Spiecker, Bruce A. Menge","doi":"10.1002/ecm.1504","DOIUrl":null,"url":null,"abstract":"<p>El Niños and marine heatwaves (MHWs) are predicted to increase in frequency under greenhouse warming. The impact of climate oscillations like El Niño-Southern Oscillation on coastal environments in the short term likely mimics those of climate change in the long term; therefore, El Niños may serve as a short-term proxy for possible long-term ecological responses to an increasingly variable climate. Understanding and prediction of ecosystem responses requires elucidating the mechanisms underlying different organizational scales (organism, space, and time). We analyzed spatiotemporal variation in the effect of the 2015–2016 El Niño and the overlapping 2014–2016 East Pacific MHW on three intertidal kelps (<i>Hedophyllum sessile</i>, <i>Egregia menziesii</i>, and <i>Postelsia palmaeformis</i>) at seven sites across 300 km of the Oregon coast and over three years post El Niño. We measured percent cover, density, maximum length, growth, and carbon : nitrogen (C:N) ratios monthly in spring/summer at each site from 2016 through 2018. Results revealed a complex interplay between spatial, temporal, and biological factors that modified the effects of these thermal anomalies on Oregon intertidal kelp populations. Our findings generally agree with prior literature showing detrimental effects of El Niño on kelp. However, El Niño and possibly MHW effects can be mitigated or amplified by environmental processes and kelp life history strategies. In our study, coastal upwelling provided regional relief for the kelp individuals with respect to their growth needs and mitigated the adverse effects of warming. On the other hand, we also found that coastal upwelling amplified, or compounded, detrimental effects of El Niño by increasing phytoplankton-induced shading and mollusk grazing on juvenile and adult kelps, thereby reducing their density. Given the greater uncertainty associated with warming events and climate change in the California Current Upwelling System and its biological implications, our findings reiterate the importance of acquiring better understanding of how context-specific underlying conditions modify ecosystem processes. More specifically, understanding how demographic traits and life history stages of kelp change with biological interactions and environmental forcing over temporal and spatial scales is crucial to anticipating future climate change ramifications.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"El Niño and marine heatwaves: Ecological impacts on Oregon rocky intertidal kelp communities at local to regional scales\",\"authors\":\"Barbara J. Spiecker, Bruce A. Menge\",\"doi\":\"10.1002/ecm.1504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>El Niños and marine heatwaves (MHWs) are predicted to increase in frequency under greenhouse warming. The impact of climate oscillations like El Niño-Southern Oscillation on coastal environments in the short term likely mimics those of climate change in the long term; therefore, El Niños may serve as a short-term proxy for possible long-term ecological responses to an increasingly variable climate. Understanding and prediction of ecosystem responses requires elucidating the mechanisms underlying different organizational scales (organism, space, and time). We analyzed spatiotemporal variation in the effect of the 2015–2016 El Niño and the overlapping 2014–2016 East Pacific MHW on three intertidal kelps (<i>Hedophyllum sessile</i>, <i>Egregia menziesii</i>, and <i>Postelsia palmaeformis</i>) at seven sites across 300 km of the Oregon coast and over three years post El Niño. We measured percent cover, density, maximum length, growth, and carbon : nitrogen (C:N) ratios monthly in spring/summer at each site from 2016 through 2018. Results revealed a complex interplay between spatial, temporal, and biological factors that modified the effects of these thermal anomalies on Oregon intertidal kelp populations. Our findings generally agree with prior literature showing detrimental effects of El Niño on kelp. However, El Niño and possibly MHW effects can be mitigated or amplified by environmental processes and kelp life history strategies. In our study, coastal upwelling provided regional relief for the kelp individuals with respect to their growth needs and mitigated the adverse effects of warming. On the other hand, we also found that coastal upwelling amplified, or compounded, detrimental effects of El Niño by increasing phytoplankton-induced shading and mollusk grazing on juvenile and adult kelps, thereby reducing their density. Given the greater uncertainty associated with warming events and climate change in the California Current Upwelling System and its biological implications, our findings reiterate the importance of acquiring better understanding of how context-specific underlying conditions modify ecosystem processes. More specifically, understanding how demographic traits and life history stages of kelp change with biological interactions and environmental forcing over temporal and spatial scales is crucial to anticipating future climate change ramifications.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1504\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1504","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
El Niño and marine heatwaves: Ecological impacts on Oregon rocky intertidal kelp communities at local to regional scales
El Niños and marine heatwaves (MHWs) are predicted to increase in frequency under greenhouse warming. The impact of climate oscillations like El Niño-Southern Oscillation on coastal environments in the short term likely mimics those of climate change in the long term; therefore, El Niños may serve as a short-term proxy for possible long-term ecological responses to an increasingly variable climate. Understanding and prediction of ecosystem responses requires elucidating the mechanisms underlying different organizational scales (organism, space, and time). We analyzed spatiotemporal variation in the effect of the 2015–2016 El Niño and the overlapping 2014–2016 East Pacific MHW on three intertidal kelps (Hedophyllum sessile, Egregia menziesii, and Postelsia palmaeformis) at seven sites across 300 km of the Oregon coast and over three years post El Niño. We measured percent cover, density, maximum length, growth, and carbon : nitrogen (C:N) ratios monthly in spring/summer at each site from 2016 through 2018. Results revealed a complex interplay between spatial, temporal, and biological factors that modified the effects of these thermal anomalies on Oregon intertidal kelp populations. Our findings generally agree with prior literature showing detrimental effects of El Niño on kelp. However, El Niño and possibly MHW effects can be mitigated or amplified by environmental processes and kelp life history strategies. In our study, coastal upwelling provided regional relief for the kelp individuals with respect to their growth needs and mitigated the adverse effects of warming. On the other hand, we also found that coastal upwelling amplified, or compounded, detrimental effects of El Niño by increasing phytoplankton-induced shading and mollusk grazing on juvenile and adult kelps, thereby reducing their density. Given the greater uncertainty associated with warming events and climate change in the California Current Upwelling System and its biological implications, our findings reiterate the importance of acquiring better understanding of how context-specific underlying conditions modify ecosystem processes. More specifically, understanding how demographic traits and life history stages of kelp change with biological interactions and environmental forcing over temporal and spatial scales is crucial to anticipating future climate change ramifications.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.