挤压对罗望子(Tamarindus indica L.)功能特性及活性成分的影响壳牌

IF 2.3 4区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Dalia Samanta Aguilar-Avila, H. Martínez‐Flores, E. Morales‐Sánchez, R. Reynoso-Camacho, M. G. Garnica-Romo
{"title":"挤压对罗望子(Tamarindus indica L.)功能特性及活性成分的影响壳牌","authors":"Dalia Samanta Aguilar-Avila, H. Martínez‐Flores, E. Morales‐Sánchez, R. Reynoso-Camacho, M. G. Garnica-Romo","doi":"10.31883/pjfns/170815","DOIUrl":null,"url":null,"abstract":"work, the effects of the tamarind shell moisture content and the temperature of their extrusion on the dietary fiber content and physiochemical properties, such as water absorption capacity (WAC), oil absorption capacity (OAC), and glucose dialysis retardation index (GDRI) of the extrudates, were estimated. Moreover, the effects of the extrusion variables on the total phenolic and total flavonoid contents and on the antioxidant capacity of the tamarind shell were evaluated. The dry powdered tamarind shell was conditioned to have 32 or 39 g of water per 100 g of shell, prior to being subjected to extrusion. Subsequently, the conditioned samples were processed at 90°C, 100°C and 110°C in a single screw extruder. A non-extruded tamarind shell was taken as a control. The extrusion resulted in a 138.3% increase in the soluble dietary fiber content, along with 40.3% and 18.4% reductions of total phenolic and total flavonoid contents, respectively. The antioxidant capacity of the tamarind shell with moisture content of 32 g/100 g extruded at 100°C and 110°C was similar to that of non-extruded material. More-over, the extruded products had the higher OAC compared to that of the control and they displayed an excellent response with regard to controlling the GDRI. The extrusion advantageously modified properties of the tamarind shell particularly when material with a moisture content of 32 g/100 g at 100°C was processed.","PeriodicalId":20332,"journal":{"name":"Polish Journal of Food and Nutrition Sciences","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Extrusion on the Functional Properties and Bioactive Compounds of Tamarind (Tamarindus indica L.) Shell\",\"authors\":\"Dalia Samanta Aguilar-Avila, H. Martínez‐Flores, E. Morales‐Sánchez, R. Reynoso-Camacho, M. G. Garnica-Romo\",\"doi\":\"10.31883/pjfns/170815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"work, the effects of the tamarind shell moisture content and the temperature of their extrusion on the dietary fiber content and physiochemical properties, such as water absorption capacity (WAC), oil absorption capacity (OAC), and glucose dialysis retardation index (GDRI) of the extrudates, were estimated. Moreover, the effects of the extrusion variables on the total phenolic and total flavonoid contents and on the antioxidant capacity of the tamarind shell were evaluated. The dry powdered tamarind shell was conditioned to have 32 or 39 g of water per 100 g of shell, prior to being subjected to extrusion. Subsequently, the conditioned samples were processed at 90°C, 100°C and 110°C in a single screw extruder. A non-extruded tamarind shell was taken as a control. The extrusion resulted in a 138.3% increase in the soluble dietary fiber content, along with 40.3% and 18.4% reductions of total phenolic and total flavonoid contents, respectively. The antioxidant capacity of the tamarind shell with moisture content of 32 g/100 g extruded at 100°C and 110°C was similar to that of non-extruded material. More-over, the extruded products had the higher OAC compared to that of the control and they displayed an excellent response with regard to controlling the GDRI. The extrusion advantageously modified properties of the tamarind shell particularly when material with a moisture content of 32 g/100 g at 100°C was processed.\",\"PeriodicalId\":20332,\"journal\":{\"name\":\"Polish Journal of Food and Nutrition Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Food and Nutrition Sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.31883/pjfns/170815\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Food and Nutrition Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31883/pjfns/170815","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了罗望子壳水分含量和挤出温度对挤出物膳食纤维含量和理化性质的影响,如吸水能力(WAC)、吸油能力(OAC)和葡萄糖透析延迟指数(GDRI)。此外,还评估了挤压变量对罗望子壳总酚和总黄酮含量以及抗氧化能力的影响。在进行挤压之前,将干燥的粉末状罗望子壳调节为每100g壳具有32或39g水。随后,在单螺杆挤出机中,在90°C、100°C和110°C下处理处理后的样品。将未挤出的罗望子壳作为对照。挤压使可溶性膳食纤维含量增加138.3%,总酚和总黄酮含量分别减少40.3%和18.4%。在100°C和110°C下挤出的水分含量为32g/100g的罗望子壳的抗氧化能力与非挤出材料的抗氧化能力相似。此外,与对照相比,挤出产品具有更高的OAC,并且它们在控制GDRI方面表现出优异的响应。挤压有利地改变了罗望子壳的性能,特别是当在100°C下处理含水量为32g/100g的材料时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Extrusion on the Functional Properties and Bioactive Compounds of Tamarind (Tamarindus indica L.) Shell
work, the effects of the tamarind shell moisture content and the temperature of their extrusion on the dietary fiber content and physiochemical properties, such as water absorption capacity (WAC), oil absorption capacity (OAC), and glucose dialysis retardation index (GDRI) of the extrudates, were estimated. Moreover, the effects of the extrusion variables on the total phenolic and total flavonoid contents and on the antioxidant capacity of the tamarind shell were evaluated. The dry powdered tamarind shell was conditioned to have 32 or 39 g of water per 100 g of shell, prior to being subjected to extrusion. Subsequently, the conditioned samples were processed at 90°C, 100°C and 110°C in a single screw extruder. A non-extruded tamarind shell was taken as a control. The extrusion resulted in a 138.3% increase in the soluble dietary fiber content, along with 40.3% and 18.4% reductions of total phenolic and total flavonoid contents, respectively. The antioxidant capacity of the tamarind shell with moisture content of 32 g/100 g extruded at 100°C and 110°C was similar to that of non-extruded material. More-over, the extruded products had the higher OAC compared to that of the control and they displayed an excellent response with regard to controlling the GDRI. The extrusion advantageously modified properties of the tamarind shell particularly when material with a moisture content of 32 g/100 g at 100°C was processed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
12.50%
发文量
25
审稿时长
20 weeks
期刊介绍: The Polish Journal of Food and Nutrition Sciences publishes original, basic and applied papers, reviews and short communications on fundamental and applied food research in the following Sections: -Food Technology: Innovative technology of food development including biotechnological and microbiological aspects Effects of processing on food composition and nutritional value -Food Chemistry: Bioactive constituents of foods Chemistry relating to major and minor components of food Analytical methods -Food Quality and Functionality: Sensory methodologies Functional properties of food Food physics Quality, storage and safety of food -Nutritional Research Section: Nutritional studies relating to major and minor components of food (excluding works related to questionnaire surveys) -“News” section: Announcements of congresses Miscellanea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信