基于关注法和无人机高光谱遥感的草原鼠洞识别与分类

IF 0.6 Q4 AGRICULTURAL ENGINEERING
Xiangbing Zhu, Yuge Bi, J. Du, Xinchao Gao, Eerdumutu Jin, Fei Hao
{"title":"基于关注法和无人机高光谱遥感的草原鼠洞识别与分类","authors":"Xiangbing Zhu, Yuge Bi, J. Du, Xinchao Gao, Eerdumutu Jin, Fei Hao","doi":"10.35633/inmateh-70-17","DOIUrl":null,"url":null,"abstract":"Rat-hole area and number of rat holes are indicators of the level of degradation and rat damage in grassland environments. However, rat-hole monitoring has consistently relied on manual ground surveys, leading to extremely low efficiency and accuracy. In this paper, a convolutional block attention module (CBAM) model suitable for rat-hole recognition in desert grassland monitoring, called grassland monitoring-CBAM, is proposed that comprehensively incorporates unmanned aerial vehicle hyperspectral remote-sensing technology and deep-learning methods. Validation results show that the overall accuracy and Kappa coefficient of the model were 99.35% and 98.90%, which were 3.96% and 3.35% higher, respectively, than those of the basic model. This study represents a breakthrough in the intelligent interpretation of rat holes and provides technical support for the subsequent rapid interpretation of grassland rat holes and rat damage evaluation. It also provides a solution for the fine classification and quantitative inversion of similar landscape features.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GRASSLAND RAT-HOLE RECOGNITION AND CLASSIFICATION BASED ON ATTENTION METHOD AND UNMANNED AERIAL VEHICLE HYPERSPECTRAL REMOTE SENSING\",\"authors\":\"Xiangbing Zhu, Yuge Bi, J. Du, Xinchao Gao, Eerdumutu Jin, Fei Hao\",\"doi\":\"10.35633/inmateh-70-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rat-hole area and number of rat holes are indicators of the level of degradation and rat damage in grassland environments. However, rat-hole monitoring has consistently relied on manual ground surveys, leading to extremely low efficiency and accuracy. In this paper, a convolutional block attention module (CBAM) model suitable for rat-hole recognition in desert grassland monitoring, called grassland monitoring-CBAM, is proposed that comprehensively incorporates unmanned aerial vehicle hyperspectral remote-sensing technology and deep-learning methods. Validation results show that the overall accuracy and Kappa coefficient of the model were 99.35% and 98.90%, which were 3.96% and 3.35% higher, respectively, than those of the basic model. This study represents a breakthrough in the intelligent interpretation of rat holes and provides technical support for the subsequent rapid interpretation of grassland rat holes and rat damage evaluation. It also provides a solution for the fine classification and quantitative inversion of similar landscape features.\",\"PeriodicalId\":44197,\"journal\":{\"name\":\"INMATEH-Agricultural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INMATEH-Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35633/inmateh-70-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-70-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

鼠洞面积和鼠洞数量是草地环境退化程度和鼠害程度的指标。然而,鼠洞监测一直依赖于人工地面调查,导致效率和准确性极低。本文综合运用无人机高光谱遥感技术和深度学习方法,提出了一种适用于沙漠草原监测中鼠洞识别的卷积块注意力模块(CBAM)模型,称为草原监测CBAM。验证结果表明,该模型的总体准确率和Kappa系数分别为99.35%和98.90%,分别比基本模型高3.96%和3.35%。该研究代表了鼠洞智能解读的突破,为后续草原鼠洞快速解读和鼠害评估提供了技术支持。它还为相似景观特征的精细分类和定量反演提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GRASSLAND RAT-HOLE RECOGNITION AND CLASSIFICATION BASED ON ATTENTION METHOD AND UNMANNED AERIAL VEHICLE HYPERSPECTRAL REMOTE SENSING
Rat-hole area and number of rat holes are indicators of the level of degradation and rat damage in grassland environments. However, rat-hole monitoring has consistently relied on manual ground surveys, leading to extremely low efficiency and accuracy. In this paper, a convolutional block attention module (CBAM) model suitable for rat-hole recognition in desert grassland monitoring, called grassland monitoring-CBAM, is proposed that comprehensively incorporates unmanned aerial vehicle hyperspectral remote-sensing technology and deep-learning methods. Validation results show that the overall accuracy and Kappa coefficient of the model were 99.35% and 98.90%, which were 3.96% and 3.35% higher, respectively, than those of the basic model. This study represents a breakthrough in the intelligent interpretation of rat holes and provides technical support for the subsequent rapid interpretation of grassland rat holes and rat damage evaluation. It also provides a solution for the fine classification and quantitative inversion of similar landscape features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INMATEH-Agricultural Engineering
INMATEH-Agricultural Engineering AGRICULTURAL ENGINEERING-
CiteScore
1.30
自引率
57.10%
发文量
98
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信