利用纳米银干膜连接功率器件的高效烧结工艺

Q4 Engineering
J. Dai, Jianfeng Li, P. Agyakwa, C. M. Johnson
{"title":"利用纳米银干膜连接功率器件的高效烧结工艺","authors":"J. Dai, Jianfeng Li, P. Agyakwa, C. M. Johnson","doi":"10.4071/IMAPS.521776","DOIUrl":null,"url":null,"abstract":"Pressure-assisted sintering processes to attach power devices using wet nanosilver pastes with time scales of minutes to a few hours have been widely reported. This paper presents our work on time-efficient sintering, using nanosilver dry film and an automatic die pick and place machine, resulting in process times of just a few seconds. The combined parameters of sintering temperature 250 °C, sintering pressure 10 MPa and sintering time 5 s were selected as the benchmark process to attach 2 mm × 2 mm × 0.5 mm dummy Si devices. Then the effects of either the sintering temperature (240 to 300 °C), time (1 to 9 s) or pressure (6 to 25 MPa) on the porosity and shear strength of the sintered joints were investigated with 3 groups and a total of 13 experimental trials. The average porosities of 24.6 to 46.2% and shear strengths of 26.1 to 47.7 MPa are comparable with and/or even better than those reported for sintered joints using wet nanosilver pastes. Their dependences on the sintering temperature, time and pressure are further fitted to equations similar to those describing the kinetics of sintering processes of powder compacts. The equations obtained can be used to not only reveal different mechanisms dominating the densification and bonding strength, but also anticipate the thermal-induced evolutions of microstructures of these rapidly sintered joints during future reliability tests and/or in service.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":"14 1","pages":"000207-000212"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time-Efficient Sintering Processes to Attach Power Devices Using Nanosilver Dry Film\",\"authors\":\"J. Dai, Jianfeng Li, P. Agyakwa, C. M. Johnson\",\"doi\":\"10.4071/IMAPS.521776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pressure-assisted sintering processes to attach power devices using wet nanosilver pastes with time scales of minutes to a few hours have been widely reported. This paper presents our work on time-efficient sintering, using nanosilver dry film and an automatic die pick and place machine, resulting in process times of just a few seconds. The combined parameters of sintering temperature 250 °C, sintering pressure 10 MPa and sintering time 5 s were selected as the benchmark process to attach 2 mm × 2 mm × 0.5 mm dummy Si devices. Then the effects of either the sintering temperature (240 to 300 °C), time (1 to 9 s) or pressure (6 to 25 MPa) on the porosity and shear strength of the sintered joints were investigated with 3 groups and a total of 13 experimental trials. The average porosities of 24.6 to 46.2% and shear strengths of 26.1 to 47.7 MPa are comparable with and/or even better than those reported for sintered joints using wet nanosilver pastes. Their dependences on the sintering temperature, time and pressure are further fitted to equations similar to those describing the kinetics of sintering processes of powder compacts. The equations obtained can be used to not only reveal different mechanisms dominating the densification and bonding strength, but also anticipate the thermal-induced evolutions of microstructures of these rapidly sintered joints during future reliability tests and/or in service.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\"14 1\",\"pages\":\"000207-000212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/IMAPS.521776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/IMAPS.521776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

使用湿纳米银糊的压力辅助烧结工艺在几分钟到几个小时的时间尺度上连接电源器件已经被广泛报道。本文介绍了我们在时间效率烧结方面的工作,使用纳米银干膜和自动取模和放置机,使过程时间仅为几秒钟。以烧结温度250℃、烧结压力10 MPa、烧结时间5 s为基准工艺,制备了2 mm × 2 mm × 0.5 mm假Si器件。然后分3组共13次试验,研究了烧结温度(240 ~ 300℃)、时间(1 ~ 9 s)和压力(6 ~ 25 MPa)对烧结接头孔隙率和抗剪强度的影响。平均孔隙率为24.6 ~ 46.2%,抗剪强度为26.1 ~ 47.7 MPa,与已有报道的湿法纳米银烧结接头相当,甚至更好。它们对烧结温度、时间和压力的依赖关系进一步拟合为类似于描述粉末压块烧结过程动力学的方程。所得到的方程不仅可以用来揭示控制致密化和结合强度的不同机制,而且还可以预测这些快速烧结接头在未来可靠性试验和/或服役期间的热致组织演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Efficient Sintering Processes to Attach Power Devices Using Nanosilver Dry Film
Pressure-assisted sintering processes to attach power devices using wet nanosilver pastes with time scales of minutes to a few hours have been widely reported. This paper presents our work on time-efficient sintering, using nanosilver dry film and an automatic die pick and place machine, resulting in process times of just a few seconds. The combined parameters of sintering temperature 250 °C, sintering pressure 10 MPa and sintering time 5 s were selected as the benchmark process to attach 2 mm × 2 mm × 0.5 mm dummy Si devices. Then the effects of either the sintering temperature (240 to 300 °C), time (1 to 9 s) or pressure (6 to 25 MPa) on the porosity and shear strength of the sintered joints were investigated with 3 groups and a total of 13 experimental trials. The average porosities of 24.6 to 46.2% and shear strengths of 26.1 to 47.7 MPa are comparable with and/or even better than those reported for sintered joints using wet nanosilver pastes. Their dependences on the sintering temperature, time and pressure are further fitted to equations similar to those describing the kinetics of sintering processes of powder compacts. The equations obtained can be used to not only reveal different mechanisms dominating the densification and bonding strength, but also anticipate the thermal-induced evolutions of microstructures of these rapidly sintered joints during future reliability tests and/or in service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信