Charlotte B.A. Stoffels , Patrick Grysan , Caroline Sion , Rishabh Rastogi , Matteo Beggiato , Eric Olmos , Sivashankar Krishnamoorthy
{"title":"用于传感和细胞扩增的等离子体微载体","authors":"Charlotte B.A. Stoffels , Patrick Grysan , Caroline Sion , Rishabh Rastogi , Matteo Beggiato , Eric Olmos , Sivashankar Krishnamoorthy","doi":"10.1016/j.snr.2023.100173","DOIUrl":null,"url":null,"abstract":"<div><p>Microcarriers (MCs, typically 50–200 µm) are promising growth supports for high-throughput cell expansion, with capability to overcome the limitations of surface area availability and nutrient access encountered by cell culture in 2D well plate configurations. Equipping MCs with in-built capability to sense molecular biomarkers is a key step forward to meet the emerging demands of personalized cell-based therapies. However, integrating sensing functionality into MCs is non-trivial due to fabrication limitations imposed by their large size, curved surfaces, and their suspension in fluid. If achieved, the sensor-integrated MCs should face further concerns of reduced stability and cytocompatibility during cell-culture. Here we demonstrate plasmonic microcarriers (PMCs) that integrate spectroscopic sensing and cell expansion functions through the deposition of gold nanoparticle (AuNP) assemblies on dextran-based MCs. Hydrogel characteristics of the dextran microcarriers was found to profoundly enhance the binding density and kinetics of AuNPs, as seen by attainment of saturated densities in few seconds, and at nanoparticle concentrations only twice that of the surface sites. The approaches to prepare PMCs are distinguished by simple, scalable routes, without need for sophisticated lab infrastructure. The capability of PMCs to act as spectroscopic transducers was demonstrated by surface-enhanced spectroscopic (SERS) detection of a model molecular probe. The growth, proliferation and migration of human mesenchymal stem cells on the PMCs was found to be comparable to that of the uncoated MCs. The results pave the way to smart, multifunctional cell growth supports to interrogate, control and report cell behavior during culture.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"6 ","pages":"Article 100173"},"PeriodicalIF":6.5000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266605392300036X/pdfft?md5=2614ada1b8378ee2ae3c05a4382154a5&pid=1-s2.0-S266605392300036X-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Plasmonic microcarriers for sensing and cell expansion\",\"authors\":\"Charlotte B.A. Stoffels , Patrick Grysan , Caroline Sion , Rishabh Rastogi , Matteo Beggiato , Eric Olmos , Sivashankar Krishnamoorthy\",\"doi\":\"10.1016/j.snr.2023.100173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microcarriers (MCs, typically 50–200 µm) are promising growth supports for high-throughput cell expansion, with capability to overcome the limitations of surface area availability and nutrient access encountered by cell culture in 2D well plate configurations. Equipping MCs with in-built capability to sense molecular biomarkers is a key step forward to meet the emerging demands of personalized cell-based therapies. However, integrating sensing functionality into MCs is non-trivial due to fabrication limitations imposed by their large size, curved surfaces, and their suspension in fluid. If achieved, the sensor-integrated MCs should face further concerns of reduced stability and cytocompatibility during cell-culture. Here we demonstrate plasmonic microcarriers (PMCs) that integrate spectroscopic sensing and cell expansion functions through the deposition of gold nanoparticle (AuNP) assemblies on dextran-based MCs. Hydrogel characteristics of the dextran microcarriers was found to profoundly enhance the binding density and kinetics of AuNPs, as seen by attainment of saturated densities in few seconds, and at nanoparticle concentrations only twice that of the surface sites. The approaches to prepare PMCs are distinguished by simple, scalable routes, without need for sophisticated lab infrastructure. The capability of PMCs to act as spectroscopic transducers was demonstrated by surface-enhanced spectroscopic (SERS) detection of a model molecular probe. The growth, proliferation and migration of human mesenchymal stem cells on the PMCs was found to be comparable to that of the uncoated MCs. The results pave the way to smart, multifunctional cell growth supports to interrogate, control and report cell behavior during culture.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"6 \",\"pages\":\"Article 100173\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266605392300036X/pdfft?md5=2614ada1b8378ee2ae3c05a4382154a5&pid=1-s2.0-S266605392300036X-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266605392300036X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266605392300036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Plasmonic microcarriers for sensing and cell expansion
Microcarriers (MCs, typically 50–200 µm) are promising growth supports for high-throughput cell expansion, with capability to overcome the limitations of surface area availability and nutrient access encountered by cell culture in 2D well plate configurations. Equipping MCs with in-built capability to sense molecular biomarkers is a key step forward to meet the emerging demands of personalized cell-based therapies. However, integrating sensing functionality into MCs is non-trivial due to fabrication limitations imposed by their large size, curved surfaces, and their suspension in fluid. If achieved, the sensor-integrated MCs should face further concerns of reduced stability and cytocompatibility during cell-culture. Here we demonstrate plasmonic microcarriers (PMCs) that integrate spectroscopic sensing and cell expansion functions through the deposition of gold nanoparticle (AuNP) assemblies on dextran-based MCs. Hydrogel characteristics of the dextran microcarriers was found to profoundly enhance the binding density and kinetics of AuNPs, as seen by attainment of saturated densities in few seconds, and at nanoparticle concentrations only twice that of the surface sites. The approaches to prepare PMCs are distinguished by simple, scalable routes, without need for sophisticated lab infrastructure. The capability of PMCs to act as spectroscopic transducers was demonstrated by surface-enhanced spectroscopic (SERS) detection of a model molecular probe. The growth, proliferation and migration of human mesenchymal stem cells on the PMCs was found to be comparable to that of the uncoated MCs. The results pave the way to smart, multifunctional cell growth supports to interrogate, control and report cell behavior during culture.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.