用于传感和细胞扩增的等离子体微载体

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Charlotte B.A. Stoffels , Patrick Grysan , Caroline Sion , Rishabh Rastogi , Matteo Beggiato , Eric Olmos , Sivashankar Krishnamoorthy
{"title":"用于传感和细胞扩增的等离子体微载体","authors":"Charlotte B.A. Stoffels ,&nbsp;Patrick Grysan ,&nbsp;Caroline Sion ,&nbsp;Rishabh Rastogi ,&nbsp;Matteo Beggiato ,&nbsp;Eric Olmos ,&nbsp;Sivashankar Krishnamoorthy","doi":"10.1016/j.snr.2023.100173","DOIUrl":null,"url":null,"abstract":"<div><p>Microcarriers (MCs, typically 50–200 µm) are promising growth supports for high-throughput cell expansion, with capability to overcome the limitations of surface area availability and nutrient access encountered by cell culture in 2D well plate configurations. Equipping MCs with in-built capability to sense molecular biomarkers is a key step forward to meet the emerging demands of personalized cell-based therapies. However, integrating sensing functionality into MCs is non-trivial due to fabrication limitations imposed by their large size, curved surfaces, and their suspension in fluid. If achieved, the sensor-integrated MCs should face further concerns of reduced stability and cytocompatibility during cell-culture. Here we demonstrate plasmonic microcarriers (PMCs) that integrate spectroscopic sensing and cell expansion functions through the deposition of gold nanoparticle (AuNP) assemblies on dextran-based MCs. Hydrogel characteristics of the dextran microcarriers was found to profoundly enhance the binding density and kinetics of AuNPs, as seen by attainment of saturated densities in few seconds, and at nanoparticle concentrations only twice that of the surface sites. The approaches to prepare PMCs are distinguished by simple, scalable routes, without need for sophisticated lab infrastructure. The capability of PMCs to act as spectroscopic transducers was demonstrated by surface-enhanced spectroscopic (SERS) detection of a model molecular probe.  The growth, proliferation and migration of human mesenchymal stem cells on the PMCs was found to be comparable to that of the uncoated MCs. The results pave the way to smart, multifunctional cell growth supports to interrogate, control and report cell behavior during culture.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"6 ","pages":"Article 100173"},"PeriodicalIF":6.5000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266605392300036X/pdfft?md5=2614ada1b8378ee2ae3c05a4382154a5&pid=1-s2.0-S266605392300036X-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Plasmonic microcarriers for sensing and cell expansion\",\"authors\":\"Charlotte B.A. Stoffels ,&nbsp;Patrick Grysan ,&nbsp;Caroline Sion ,&nbsp;Rishabh Rastogi ,&nbsp;Matteo Beggiato ,&nbsp;Eric Olmos ,&nbsp;Sivashankar Krishnamoorthy\",\"doi\":\"10.1016/j.snr.2023.100173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microcarriers (MCs, typically 50–200 µm) are promising growth supports for high-throughput cell expansion, with capability to overcome the limitations of surface area availability and nutrient access encountered by cell culture in 2D well plate configurations. Equipping MCs with in-built capability to sense molecular biomarkers is a key step forward to meet the emerging demands of personalized cell-based therapies. However, integrating sensing functionality into MCs is non-trivial due to fabrication limitations imposed by their large size, curved surfaces, and their suspension in fluid. If achieved, the sensor-integrated MCs should face further concerns of reduced stability and cytocompatibility during cell-culture. Here we demonstrate plasmonic microcarriers (PMCs) that integrate spectroscopic sensing and cell expansion functions through the deposition of gold nanoparticle (AuNP) assemblies on dextran-based MCs. Hydrogel characteristics of the dextran microcarriers was found to profoundly enhance the binding density and kinetics of AuNPs, as seen by attainment of saturated densities in few seconds, and at nanoparticle concentrations only twice that of the surface sites. The approaches to prepare PMCs are distinguished by simple, scalable routes, without need for sophisticated lab infrastructure. The capability of PMCs to act as spectroscopic transducers was demonstrated by surface-enhanced spectroscopic (SERS) detection of a model molecular probe.  The growth, proliferation and migration of human mesenchymal stem cells on the PMCs was found to be comparable to that of the uncoated MCs. The results pave the way to smart, multifunctional cell growth supports to interrogate, control and report cell behavior during culture.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"6 \",\"pages\":\"Article 100173\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266605392300036X/pdfft?md5=2614ada1b8378ee2ae3c05a4382154a5&pid=1-s2.0-S266605392300036X-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266605392300036X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266605392300036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

微载体(MCs,通常为50-200µm)是高通量细胞扩增的有希望的生长支持,能够克服二维孔板结构中细胞培养所遇到的表面积可用性和营养物质获取的限制。为MCs配备内置的感知分子生物标志物的能力是满足个性化细胞治疗新需求的关键一步。然而,由于MCs的大尺寸、曲面和悬浮在流体中的制造限制,将传感功能集成到MCs中是非平凡的。如果实现,传感器集成的MCs将面临在细胞培养过程中稳定性和细胞相容性降低的进一步关注。在这里,我们展示了等离子体微载流子(PMCs),通过在葡聚糖基等离子体微载流子上沉积金纳米粒子(AuNP)组件,集成了光谱传感和细胞扩展功能。研究发现,葡聚糖微载体的水凝胶特性大大增强了AuNPs的结合密度和动力学,在几秒钟内达到饱和密度,纳米颗粒浓度仅为表面位点的两倍。制备pmc的方法的特点是简单,可扩展的路线,不需要复杂的实验室基础设施。通过对模型分子探针的表面增强光谱(SERS)检测证明了pmc作为光谱换能器的能力。人间充质干细胞在pmc上的生长、增殖和迁移与未包被的MCs相当。该结果为智能,多功能细胞生长支持铺平了道路,以询问,控制和报告细胞在培养过程中的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasmonic microcarriers for sensing and cell expansion

Plasmonic microcarriers for sensing and cell expansion

Microcarriers (MCs, typically 50–200 µm) are promising growth supports for high-throughput cell expansion, with capability to overcome the limitations of surface area availability and nutrient access encountered by cell culture in 2D well plate configurations. Equipping MCs with in-built capability to sense molecular biomarkers is a key step forward to meet the emerging demands of personalized cell-based therapies. However, integrating sensing functionality into MCs is non-trivial due to fabrication limitations imposed by their large size, curved surfaces, and their suspension in fluid. If achieved, the sensor-integrated MCs should face further concerns of reduced stability and cytocompatibility during cell-culture. Here we demonstrate plasmonic microcarriers (PMCs) that integrate spectroscopic sensing and cell expansion functions through the deposition of gold nanoparticle (AuNP) assemblies on dextran-based MCs. Hydrogel characteristics of the dextran microcarriers was found to profoundly enhance the binding density and kinetics of AuNPs, as seen by attainment of saturated densities in few seconds, and at nanoparticle concentrations only twice that of the surface sites. The approaches to prepare PMCs are distinguished by simple, scalable routes, without need for sophisticated lab infrastructure. The capability of PMCs to act as spectroscopic transducers was demonstrated by surface-enhanced spectroscopic (SERS) detection of a model molecular probe.  The growth, proliferation and migration of human mesenchymal stem cells on the PMCs was found to be comparable to that of the uncoated MCs. The results pave the way to smart, multifunctional cell growth supports to interrogate, control and report cell behavior during culture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信