{"title":"具有最大状态复杂度的语言的数量","authors":"Bjørn Kjos-Hanssen, Lei Liu","doi":"10.1007/s00012-022-00785-2","DOIUrl":null,"url":null,"abstract":"<div><p>Câmpeanu and Ho (2004) determined the maximum finite state complexity of finite languages, building on work of Champarnaud and Pin (1989). They stated that it is very difficult to determine the number of maximum-complexity languages. Here we give a formula for this number. We also generalize their work from languages to functions on finite sets.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-022-00785-2.pdf","citationCount":"1","resultStr":"{\"title\":\"The number of languages with maximum state complexity\",\"authors\":\"Bjørn Kjos-Hanssen, Lei Liu\",\"doi\":\"10.1007/s00012-022-00785-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Câmpeanu and Ho (2004) determined the maximum finite state complexity of finite languages, building on work of Champarnaud and Pin (1989). They stated that it is very difficult to determine the number of maximum-complexity languages. Here we give a formula for this number. We also generalize their work from languages to functions on finite sets.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-022-00785-2.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-022-00785-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-022-00785-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The number of languages with maximum state complexity
Câmpeanu and Ho (2004) determined the maximum finite state complexity of finite languages, building on work of Champarnaud and Pin (1989). They stated that it is very difficult to determine the number of maximum-complexity languages. Here we give a formula for this number. We also generalize their work from languages to functions on finite sets.
期刊介绍:
Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.