{"title":"密苏里河上游Pallid和Shovelnose鲟鱼的人口学和进化史","authors":"W. R. Ardren, G. Jordan, P. DeHaan, R. Waples","doi":"10.3996/jfwm-21-035","DOIUrl":null,"url":null,"abstract":"Natural-origin pallid sturgeon Scaphirhynchus albus in the upper Missouri River are predicted to become extirpated as early as 2024. To aid in recovery efforts for this endangered species, we used genetic data from 17 microsatellite loci to infer demographic and evolutionary history of pallid sturgeon and a sympatric shovelnose sturgeon S. platorynchus . A recent sundering of geneflow between these species was indicated by overlapping allele size distributions at all loci and low level of genetic divergence ( F ST = 0.10). Tests for recent bottlenecks, using heterozygosity excess or allele frequency mode-shift tests indicated demographic stability for both species while the M-Ratio identified historic bottlenecks had occurred in both species. Estimates of historical effective population size ( N e ), based on coalescent modeling of allele size distribution, suggested the geographic expansion of these species into the upper Missouri River during the late Pleistocene was associated with 10 to 19 fold reductions in N e . In contrast estimates of contemporary estimates of N e based on linkage disequilibrium revealed that shovelnose sturgeon ( N e = 2983) had approximately 10 times greater N e than pallid sturgeon ( N e = 254). Our results are consistent with the recent collapse of pallid sturgeon being caused by dam construction which occurred between 1930 and 1965. Fortunately, genetic diversity remaining in this long-lived species has provided an opportunity to conserve pre-dam pallid sturgeon genetic diversity via a successful captive breeding program. We provide recommendations to address key conservation needs including how to incorporate our estimate of N e / adult census size of 0.26 (95% CI: 0.16 – 0.47) into setting demographic recovery goals for pallid sturgeon.","PeriodicalId":49036,"journal":{"name":"Journal of Fish and Wildlife Management","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demographic and Evolutionary History of Pallid and Shovelnose Sturgeon in the Upper Missouri River\",\"authors\":\"W. R. Ardren, G. Jordan, P. DeHaan, R. Waples\",\"doi\":\"10.3996/jfwm-21-035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural-origin pallid sturgeon Scaphirhynchus albus in the upper Missouri River are predicted to become extirpated as early as 2024. To aid in recovery efforts for this endangered species, we used genetic data from 17 microsatellite loci to infer demographic and evolutionary history of pallid sturgeon and a sympatric shovelnose sturgeon S. platorynchus . A recent sundering of geneflow between these species was indicated by overlapping allele size distributions at all loci and low level of genetic divergence ( F ST = 0.10). Tests for recent bottlenecks, using heterozygosity excess or allele frequency mode-shift tests indicated demographic stability for both species while the M-Ratio identified historic bottlenecks had occurred in both species. Estimates of historical effective population size ( N e ), based on coalescent modeling of allele size distribution, suggested the geographic expansion of these species into the upper Missouri River during the late Pleistocene was associated with 10 to 19 fold reductions in N e . In contrast estimates of contemporary estimates of N e based on linkage disequilibrium revealed that shovelnose sturgeon ( N e = 2983) had approximately 10 times greater N e than pallid sturgeon ( N e = 254). Our results are consistent with the recent collapse of pallid sturgeon being caused by dam construction which occurred between 1930 and 1965. Fortunately, genetic diversity remaining in this long-lived species has provided an opportunity to conserve pre-dam pallid sturgeon genetic diversity via a successful captive breeding program. We provide recommendations to address key conservation needs including how to incorporate our estimate of N e / adult census size of 0.26 (95% CI: 0.16 – 0.47) into setting demographic recovery goals for pallid sturgeon.\",\"PeriodicalId\":49036,\"journal\":{\"name\":\"Journal of Fish and Wildlife Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fish and Wildlife Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3996/jfwm-21-035\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fish and Wildlife Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3996/jfwm-21-035","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Demographic and Evolutionary History of Pallid and Shovelnose Sturgeon in the Upper Missouri River
Natural-origin pallid sturgeon Scaphirhynchus albus in the upper Missouri River are predicted to become extirpated as early as 2024. To aid in recovery efforts for this endangered species, we used genetic data from 17 microsatellite loci to infer demographic and evolutionary history of pallid sturgeon and a sympatric shovelnose sturgeon S. platorynchus . A recent sundering of geneflow between these species was indicated by overlapping allele size distributions at all loci and low level of genetic divergence ( F ST = 0.10). Tests for recent bottlenecks, using heterozygosity excess or allele frequency mode-shift tests indicated demographic stability for both species while the M-Ratio identified historic bottlenecks had occurred in both species. Estimates of historical effective population size ( N e ), based on coalescent modeling of allele size distribution, suggested the geographic expansion of these species into the upper Missouri River during the late Pleistocene was associated with 10 to 19 fold reductions in N e . In contrast estimates of contemporary estimates of N e based on linkage disequilibrium revealed that shovelnose sturgeon ( N e = 2983) had approximately 10 times greater N e than pallid sturgeon ( N e = 254). Our results are consistent with the recent collapse of pallid sturgeon being caused by dam construction which occurred between 1930 and 1965. Fortunately, genetic diversity remaining in this long-lived species has provided an opportunity to conserve pre-dam pallid sturgeon genetic diversity via a successful captive breeding program. We provide recommendations to address key conservation needs including how to incorporate our estimate of N e / adult census size of 0.26 (95% CI: 0.16 – 0.47) into setting demographic recovery goals for pallid sturgeon.
期刊介绍:
Journal of Fish and Wildlife Management encourages submission of original, high quality, English-language scientific papers on the practical application and integration of science to conservation and management of native North American fish, wildlife, plants and their habitats in the following categories: Articles, Notes, Surveys and Issues and Perspectives. Papers that do not relate directly to native North American fish, wildlife plants or their habitats may be considered if they highlight species that are closely related to, or conservation issues that are germane to, those in North America.