{"title":"软质两相弹性粘弹性材料应力-应变关系的非平衡热力学模型","authors":"Pavlos S. Stephanou, P. Vafeas, V. Mavrantzas","doi":"10.1515/jnet-2022-0069","DOIUrl":null,"url":null,"abstract":"Abstract In “soft–soft nanocomposites” based on film formation of latexes with structured particles, the combination of particle structure and interparticle crosslinking leads to materials that behave as nonlinear viscoelastic fluids at small strains and as highly elastic networks at larger strains. Similarly, in studies of flow-induced crystallization in polymers, a two-phase model is often invoked in which a soft viscoelastic component is coupled with a rigid semi-crystalline phase providing stiffness. In the present work, we use the framework of non-equilibrium thermodynamics (NET) to develop stress-strain relationships for such two-phase systems characterized by a viscoelastic and an elastic component by making use of two conformation tensors: the first describes the microstructure of the viscoelastic phase while the second is related to the elastic Finger strain tensor quantifying the deformation of the elastic phase due to strain and is responsible for strain-hardening. The final transport equations are formulated in the context of the generalized bracket formalism of NET and can describe the rheological behavior and mechanical response of a large variety of soft materials ranging from rubbers to artificial tissues.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"48 1","pages":"91 - 105"},"PeriodicalIF":4.3000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-equilibrium thermodynamics modelling of the stress-strain relationship in soft two-phase elastic-viscoelastic materials\",\"authors\":\"Pavlos S. Stephanou, P. Vafeas, V. Mavrantzas\",\"doi\":\"10.1515/jnet-2022-0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In “soft–soft nanocomposites” based on film formation of latexes with structured particles, the combination of particle structure and interparticle crosslinking leads to materials that behave as nonlinear viscoelastic fluids at small strains and as highly elastic networks at larger strains. Similarly, in studies of flow-induced crystallization in polymers, a two-phase model is often invoked in which a soft viscoelastic component is coupled with a rigid semi-crystalline phase providing stiffness. In the present work, we use the framework of non-equilibrium thermodynamics (NET) to develop stress-strain relationships for such two-phase systems characterized by a viscoelastic and an elastic component by making use of two conformation tensors: the first describes the microstructure of the viscoelastic phase while the second is related to the elastic Finger strain tensor quantifying the deformation of the elastic phase due to strain and is responsible for strain-hardening. The final transport equations are formulated in the context of the generalized bracket formalism of NET and can describe the rheological behavior and mechanical response of a large variety of soft materials ranging from rubbers to artificial tissues.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"48 1\",\"pages\":\"91 - 105\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2022-0069\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0069","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Non-equilibrium thermodynamics modelling of the stress-strain relationship in soft two-phase elastic-viscoelastic materials
Abstract In “soft–soft nanocomposites” based on film formation of latexes with structured particles, the combination of particle structure and interparticle crosslinking leads to materials that behave as nonlinear viscoelastic fluids at small strains and as highly elastic networks at larger strains. Similarly, in studies of flow-induced crystallization in polymers, a two-phase model is often invoked in which a soft viscoelastic component is coupled with a rigid semi-crystalline phase providing stiffness. In the present work, we use the framework of non-equilibrium thermodynamics (NET) to develop stress-strain relationships for such two-phase systems characterized by a viscoelastic and an elastic component by making use of two conformation tensors: the first describes the microstructure of the viscoelastic phase while the second is related to the elastic Finger strain tensor quantifying the deformation of the elastic phase due to strain and is responsible for strain-hardening. The final transport equations are formulated in the context of the generalized bracket formalism of NET and can describe the rheological behavior and mechanical response of a large variety of soft materials ranging from rubbers to artificial tissues.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.