Lisa Rosenblum, Elisa Grewe, J. Churan, F. Bremmer
{"title":"触觉流对视觉头球感知的影响。","authors":"Lisa Rosenblum, Elisa Grewe, J. Churan, F. Bremmer","doi":"10.1167/jov.21.9.1915","DOIUrl":null,"url":null,"abstract":"The integration of information from different sensory modalities is crucial for successful navigation through an environment. Among others, self-motion induces distinct optic flow patterns on the retina, vestibular signals and tactile flow, which contribute to determine traveled distance (path integration) or movement direction (heading). While the processing of combined visual-vestibular information is subject to a growing body of literature, the processing of visuo-tactile signals in the context of self-motion has received comparatively little attention. Here, we investigated whether visual heading perception is influenced by behaviorally irrelevant tactile flow. In the visual modality, we simulated an observer's self-motion across a horizontal ground plane (optic flow). Tactile self-motion stimuli were delivered by air flow from head-mounted nozzles (tactile flow). In blocks of trials, we presented only visual or tactile stimuli and subjects had to report their perceived heading. In another block of trials, tactile and visual stimuli were presented simultaneously, with the tactile flow within ±40° of the visual heading (bimodal condition). Here, importantly, participants had to report their perceived visual heading. Perceived self-motion direction in all conditions revealed a centripetal bias, i.e., heading directions were perceived as compressed toward straight ahead. In the bimodal condition, we found a small but systematic influence of task-irrelevant tactile flow on visually perceived headings as function of their directional offset. We conclude that tactile flow is more tightly linked to self-motion perception than previously thought.","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Tactile Flow on Visual Heading Perception.\",\"authors\":\"Lisa Rosenblum, Elisa Grewe, J. Churan, F. Bremmer\",\"doi\":\"10.1167/jov.21.9.1915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of information from different sensory modalities is crucial for successful navigation through an environment. Among others, self-motion induces distinct optic flow patterns on the retina, vestibular signals and tactile flow, which contribute to determine traveled distance (path integration) or movement direction (heading). While the processing of combined visual-vestibular information is subject to a growing body of literature, the processing of visuo-tactile signals in the context of self-motion has received comparatively little attention. Here, we investigated whether visual heading perception is influenced by behaviorally irrelevant tactile flow. In the visual modality, we simulated an observer's self-motion across a horizontal ground plane (optic flow). Tactile self-motion stimuli were delivered by air flow from head-mounted nozzles (tactile flow). In blocks of trials, we presented only visual or tactile stimuli and subjects had to report their perceived heading. In another block of trials, tactile and visual stimuli were presented simultaneously, with the tactile flow within ±40° of the visual heading (bimodal condition). Here, importantly, participants had to report their perceived visual heading. Perceived self-motion direction in all conditions revealed a centripetal bias, i.e., heading directions were perceived as compressed toward straight ahead. In the bimodal condition, we found a small but systematic influence of task-irrelevant tactile flow on visually perceived headings as function of their directional offset. We conclude that tactile flow is more tightly linked to self-motion perception than previously thought.\",\"PeriodicalId\":51298,\"journal\":{\"name\":\"Multisensory Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multisensory Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.21.9.1915\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1167/jov.21.9.1915","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Influence of Tactile Flow on Visual Heading Perception.
The integration of information from different sensory modalities is crucial for successful navigation through an environment. Among others, self-motion induces distinct optic flow patterns on the retina, vestibular signals and tactile flow, which contribute to determine traveled distance (path integration) or movement direction (heading). While the processing of combined visual-vestibular information is subject to a growing body of literature, the processing of visuo-tactile signals in the context of self-motion has received comparatively little attention. Here, we investigated whether visual heading perception is influenced by behaviorally irrelevant tactile flow. In the visual modality, we simulated an observer's self-motion across a horizontal ground plane (optic flow). Tactile self-motion stimuli were delivered by air flow from head-mounted nozzles (tactile flow). In blocks of trials, we presented only visual or tactile stimuli and subjects had to report their perceived heading. In another block of trials, tactile and visual stimuli were presented simultaneously, with the tactile flow within ±40° of the visual heading (bimodal condition). Here, importantly, participants had to report their perceived visual heading. Perceived self-motion direction in all conditions revealed a centripetal bias, i.e., heading directions were perceived as compressed toward straight ahead. In the bimodal condition, we found a small but systematic influence of task-irrelevant tactile flow on visually perceived headings as function of their directional offset. We conclude that tactile flow is more tightly linked to self-motion perception than previously thought.
期刊介绍:
Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.