Tahir M Shakir, Liang Fengli, Guo Chenguang, N. Chen, Ming Zhang, Mai Shaohui
{"title":"磁共振成像在脑胶质瘤分级中的应用:磁共振成像质量评价的新视角","authors":"Tahir M Shakir, Liang Fengli, Guo Chenguang, N. Chen, Ming Zhang, Mai Shaohui","doi":"10.1177/20584601221077068","DOIUrl":null,"url":null,"abstract":"Background Noninvasive preoperative prediction of histological grading is essential for clinical management of cerebral glioma. Purpose This study aimed to investigate the association between the image quality assessment of 1H magnetic resonance spectroscopy and accurate grading of glioma. Materials and Methods 98 glioma patients confirmed by pathology were retrospectively recruited in this single-center study. All patients underwent 1H-MRS examination at 3.0T before surgery. According to WHO standards, all cases were divided into two groups: low-grade glioma (grade I and II, 48 cases) and high-grade glioma (grades III and IV, 50 cases). The metabolite ratios in both grades were calculated before and after image quality assessment. The area under the receiver operating characteristic (ROC) curve was used to evaluate the capacity of each ratio in glioma grading. Results The Cho/Cr, Cho/NAA and NAA/Cr metabolite ratios had certain differences in each glioma group before and after MRS image quality assessment. In the low-grade glioma group, there was a dramatic difference in the Cho/Cr ratio before and after image quality assessment (p = 0.011). After MRS image quality assessment, the accuracy of glioma grading was significantly improved. The Cho/Cr ratio with 83.3% sensitivity and 93.7% specificity is the best index of glioma grading, with the optimal cutoff value of the Cho/Cr ratio being 3.72. Conclusion The image quality of MRS does affect the metabolite ratios and the results of glioma grading. MRS image quality assessment can observably improve the accuracy rate of glioma grading. The Cho/Cr ratio has the best diagnostic performance in differentiating high-grade from low-grade glioma.","PeriodicalId":72063,"journal":{"name":"Acta radiologica open","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"1H-MR spectroscopy in grading of cerebral glioma: A new view point, MRS image quality assessment\",\"authors\":\"Tahir M Shakir, Liang Fengli, Guo Chenguang, N. Chen, Ming Zhang, Mai Shaohui\",\"doi\":\"10.1177/20584601221077068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Noninvasive preoperative prediction of histological grading is essential for clinical management of cerebral glioma. Purpose This study aimed to investigate the association between the image quality assessment of 1H magnetic resonance spectroscopy and accurate grading of glioma. Materials and Methods 98 glioma patients confirmed by pathology were retrospectively recruited in this single-center study. All patients underwent 1H-MRS examination at 3.0T before surgery. According to WHO standards, all cases were divided into two groups: low-grade glioma (grade I and II, 48 cases) and high-grade glioma (grades III and IV, 50 cases). The metabolite ratios in both grades were calculated before and after image quality assessment. The area under the receiver operating characteristic (ROC) curve was used to evaluate the capacity of each ratio in glioma grading. Results The Cho/Cr, Cho/NAA and NAA/Cr metabolite ratios had certain differences in each glioma group before and after MRS image quality assessment. In the low-grade glioma group, there was a dramatic difference in the Cho/Cr ratio before and after image quality assessment (p = 0.011). After MRS image quality assessment, the accuracy of glioma grading was significantly improved. The Cho/Cr ratio with 83.3% sensitivity and 93.7% specificity is the best index of glioma grading, with the optimal cutoff value of the Cho/Cr ratio being 3.72. Conclusion The image quality of MRS does affect the metabolite ratios and the results of glioma grading. MRS image quality assessment can observably improve the accuracy rate of glioma grading. The Cho/Cr ratio has the best diagnostic performance in differentiating high-grade from low-grade glioma.\",\"PeriodicalId\":72063,\"journal\":{\"name\":\"Acta radiologica open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta radiologica open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20584601221077068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20584601221077068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
1H-MR spectroscopy in grading of cerebral glioma: A new view point, MRS image quality assessment
Background Noninvasive preoperative prediction of histological grading is essential for clinical management of cerebral glioma. Purpose This study aimed to investigate the association between the image quality assessment of 1H magnetic resonance spectroscopy and accurate grading of glioma. Materials and Methods 98 glioma patients confirmed by pathology were retrospectively recruited in this single-center study. All patients underwent 1H-MRS examination at 3.0T before surgery. According to WHO standards, all cases were divided into two groups: low-grade glioma (grade I and II, 48 cases) and high-grade glioma (grades III and IV, 50 cases). The metabolite ratios in both grades were calculated before and after image quality assessment. The area under the receiver operating characteristic (ROC) curve was used to evaluate the capacity of each ratio in glioma grading. Results The Cho/Cr, Cho/NAA and NAA/Cr metabolite ratios had certain differences in each glioma group before and after MRS image quality assessment. In the low-grade glioma group, there was a dramatic difference in the Cho/Cr ratio before and after image quality assessment (p = 0.011). After MRS image quality assessment, the accuracy of glioma grading was significantly improved. The Cho/Cr ratio with 83.3% sensitivity and 93.7% specificity is the best index of glioma grading, with the optimal cutoff value of the Cho/Cr ratio being 3.72. Conclusion The image quality of MRS does affect the metabolite ratios and the results of glioma grading. MRS image quality assessment can observably improve the accuracy rate of glioma grading. The Cho/Cr ratio has the best diagnostic performance in differentiating high-grade from low-grade glioma.