地震成像的波梯度法研究进展

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences
Chuntao Liang , Feihuang Cao , Zhijin Liu , Yingna Chang
{"title":"地震成像的波梯度法研究进展","authors":"Chuntao Liang ,&nbsp;Feihuang Cao ,&nbsp;Zhijin Liu ,&nbsp;Yingna Chang","doi":"10.1016/j.eqs.2023.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>As dense seismic arrays at different scales are deployed, the techniques to make full use of array data with low computing cost become increasingly needed. The wave gradiometry method (WGM) is a new branch in seismic tomography, which utilizes the spatial gradients of the wavefield to determine the phase velocity, wave propagation direction, geometrical spreading, and radiation pattern. Seismic wave propagation parameters obtained using the WGM can be further applied to invert 3D velocity models, <em>Q</em> values, and anisotropy at lithospheric (crust and/or mantle) and smaller scales (e.g., industrial oilfield or fault zone). Herein, we review the theoretical foundation, technical development, and major applications of the WGM, and compared the WGM with other commonly used major array imaging methods. Future development of the WGM is also discussed.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 3","pages":"Pages 254-281"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of the wave gradiometry method for seismic imaging\",\"authors\":\"Chuntao Liang ,&nbsp;Feihuang Cao ,&nbsp;Zhijin Liu ,&nbsp;Yingna Chang\",\"doi\":\"10.1016/j.eqs.2023.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As dense seismic arrays at different scales are deployed, the techniques to make full use of array data with low computing cost become increasingly needed. The wave gradiometry method (WGM) is a new branch in seismic tomography, which utilizes the spatial gradients of the wavefield to determine the phase velocity, wave propagation direction, geometrical spreading, and radiation pattern. Seismic wave propagation parameters obtained using the WGM can be further applied to invert 3D velocity models, <em>Q</em> values, and anisotropy at lithospheric (crust and/or mantle) and smaller scales (e.g., industrial oilfield or fault zone). Herein, we review the theoretical foundation, technical development, and major applications of the WGM, and compared the WGM with other commonly used major array imaging methods. Future development of the WGM is also discussed.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"36 3\",\"pages\":\"Pages 254-281\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451923000228\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451923000228","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

随着不同规模的密集地震阵列的部署,充分利用阵列数据和低计算成本的技术越来越需要。波浪梯度法是地震层析成像的一个新分支,它利用波场的空间梯度来确定相速度、波的传播方向、几何传播和辐射方向。利用WGM获得的地震波传播参数可以进一步应用于反演岩石圈(地壳和/或地幔)和较小尺度(如工业油田或断裂带)的三维速度模型、Q值和各向异性。本文综述了WGM的理论基础、技术发展和主要应用,并与其他常用的主要阵列成像方法进行了比较。并对WGM的未来发展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of the wave gradiometry method for seismic imaging

As dense seismic arrays at different scales are deployed, the techniques to make full use of array data with low computing cost become increasingly needed. The wave gradiometry method (WGM) is a new branch in seismic tomography, which utilizes the spatial gradients of the wavefield to determine the phase velocity, wave propagation direction, geometrical spreading, and radiation pattern. Seismic wave propagation parameters obtained using the WGM can be further applied to invert 3D velocity models, Q values, and anisotropy at lithospheric (crust and/or mantle) and smaller scales (e.g., industrial oilfield or fault zone). Herein, we review the theoretical foundation, technical development, and major applications of the WGM, and compared the WGM with other commonly used major array imaging methods. Future development of the WGM is also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信