{"title":"无焦点表面上测地线流动的多重分形分析","authors":"Kiho Park, Tianyu Wang","doi":"10.1080/14689367.2021.1978394","DOIUrl":null,"url":null,"abstract":"In this paper, we study multifractal spectra of the geodesic flows on compact rank 1 surfaces without focal points. We compute the entropy of the level sets for the Lyapunov exponents and establish a lower bound for their Hausdorff dimension in terms of the pressure function and its Legendre transform. In doing so, we employ and generalize results of Burns and Gelfert for non-positively curved surfaces and construct an increasingly nested sequence of basic sets in the complement of the singular set on which the geodesic flow is non-uniformly hyperbolic. Such a sequence of basic sets eventually contains any given basic set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifractal analysis of geodesic flows on surfaces without focal points\",\"authors\":\"Kiho Park, Tianyu Wang\",\"doi\":\"10.1080/14689367.2021.1978394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study multifractal spectra of the geodesic flows on compact rank 1 surfaces without focal points. We compute the entropy of the level sets for the Lyapunov exponents and establish a lower bound for their Hausdorff dimension in terms of the pressure function and its Legendre transform. In doing so, we employ and generalize results of Burns and Gelfert for non-positively curved surfaces and construct an increasingly nested sequence of basic sets in the complement of the singular set on which the geodesic flow is non-uniformly hyperbolic. Such a sequence of basic sets eventually contains any given basic set.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2021.1978394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2021.1978394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multifractal analysis of geodesic flows on surfaces without focal points
In this paper, we study multifractal spectra of the geodesic flows on compact rank 1 surfaces without focal points. We compute the entropy of the level sets for the Lyapunov exponents and establish a lower bound for their Hausdorff dimension in terms of the pressure function and its Legendre transform. In doing so, we employ and generalize results of Burns and Gelfert for non-positively curved surfaces and construct an increasingly nested sequence of basic sets in the complement of the singular set on which the geodesic flow is non-uniformly hyperbolic. Such a sequence of basic sets eventually contains any given basic set.