{"title":"算子的拓扑加速","authors":"Aimee S. A. Johnson, D. McClendon","doi":"10.1080/14689367.2022.2033166","DOIUrl":null,"url":null,"abstract":"We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topological speedups of ℤd-actions\",\"authors\":\"Aimee S. A. Johnson, D. McClendon\",\"doi\":\"10.1080/14689367.2022.2033166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2033166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2033166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.