{"title":"算子的拓扑加速","authors":"Aimee S. A. Johnson, D. McClendon","doi":"10.1080/14689367.2022.2033166","DOIUrl":null,"url":null,"abstract":"We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"37 1","pages":"222 - 261"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topological speedups of ℤd-actions\",\"authors\":\"Aimee S. A. Johnson, D. McClendon\",\"doi\":\"10.1080/14689367.2022.2033166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"37 1\",\"pages\":\"222 - 261\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2033166\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2033166","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences