基于深度学习方法的癫痫发作检测

Sirwan Tofiq Jaafar, M. Mohammadi
{"title":"基于深度学习方法的癫痫发作检测","authors":"Sirwan Tofiq Jaafar, M. Mohammadi","doi":"10.21928/UHDJST.V3N2Y2019.PP41-50","DOIUrl":null,"url":null,"abstract":"An epileptic seizure is a sign of abnormal activity in the human brain. Electroencephalogram (EEG) is a standard tool that has been used vastly for detection of seizure activities. Many methods have been developed to help the neurophysiologists to detect the seizure activities with high accuracy. Most of them rely on the features extracted in the time, frequency, or time-frequency domains. The performance of the proposed methods is related to the performance of the features extracted from EEG recordings. Deep neural networks enable learning directly on the data without the domain knowledge needed to construct a feature set. This approach has been hugely successful in almost all machine learning applications. We propose a new framework that also learns directly from the data, without extracting a feature set. We proposed an original deep-learning-based method to classify EEG recordings. The EEG signal is segmented into 4 s segments and used to train the long- and short-term memory network. The trained model is used to discriminate the EEG seizure from the background. The Freiburg EEG dataset is used to assess the performance of the classifier. The 5-fold cross-validation is selected for evaluating the performance of the proposed method. About 97.75% of the accuracy is achieved.","PeriodicalId":32983,"journal":{"name":"UHD Journal of Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Epileptic Seizure Detection using Deep Learning Approach\",\"authors\":\"Sirwan Tofiq Jaafar, M. Mohammadi\",\"doi\":\"10.21928/UHDJST.V3N2Y2019.PP41-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An epileptic seizure is a sign of abnormal activity in the human brain. Electroencephalogram (EEG) is a standard tool that has been used vastly for detection of seizure activities. Many methods have been developed to help the neurophysiologists to detect the seizure activities with high accuracy. Most of them rely on the features extracted in the time, frequency, or time-frequency domains. The performance of the proposed methods is related to the performance of the features extracted from EEG recordings. Deep neural networks enable learning directly on the data without the domain knowledge needed to construct a feature set. This approach has been hugely successful in almost all machine learning applications. We propose a new framework that also learns directly from the data, without extracting a feature set. We proposed an original deep-learning-based method to classify EEG recordings. The EEG signal is segmented into 4 s segments and used to train the long- and short-term memory network. The trained model is used to discriminate the EEG seizure from the background. The Freiburg EEG dataset is used to assess the performance of the classifier. The 5-fold cross-validation is selected for evaluating the performance of the proposed method. About 97.75% of the accuracy is achieved.\",\"PeriodicalId\":32983,\"journal\":{\"name\":\"UHD Journal of Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UHD Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21928/UHDJST.V3N2Y2019.PP41-50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UHD Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21928/UHDJST.V3N2Y2019.PP41-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

癫痫发作是人脑异常活动的一种表现。脑电图(EEG)是一种标准的工具,已广泛用于检测癫痫发作活动。许多方法已经发展起来,以帮助神经生理学家检测癫痫活动的准确性。它们大多依赖于在时间域、频率域或时频域提取的特征。所提方法的性能与从脑电图记录中提取的特征的性能有关。深度神经网络可以直接在数据上学习,而不需要构建特征集所需的领域知识。这种方法在几乎所有的机器学习应用中都取得了巨大的成功。我们提出了一个新的框架,它也直接从数据中学习,而不提取特征集。我们提出了一种新颖的基于深度学习的脑电记录分类方法。将脑电信号分成4个s段,分别用于训练长、短时记忆网络。训练后的模型用于区分脑电图发作和背景。使用Freiburg EEG数据集来评估分类器的性能。选择5重交叉验证来评估所提出方法的性能。准确率达到97.75%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic Seizure Detection using Deep Learning Approach
An epileptic seizure is a sign of abnormal activity in the human brain. Electroencephalogram (EEG) is a standard tool that has been used vastly for detection of seizure activities. Many methods have been developed to help the neurophysiologists to detect the seizure activities with high accuracy. Most of them rely on the features extracted in the time, frequency, or time-frequency domains. The performance of the proposed methods is related to the performance of the features extracted from EEG recordings. Deep neural networks enable learning directly on the data without the domain knowledge needed to construct a feature set. This approach has been hugely successful in almost all machine learning applications. We propose a new framework that also learns directly from the data, without extracting a feature set. We proposed an original deep-learning-based method to classify EEG recordings. The EEG signal is segmented into 4 s segments and used to train the long- and short-term memory network. The trained model is used to discriminate the EEG seizure from the background. The Freiburg EEG dataset is used to assess the performance of the classifier. The 5-fold cross-validation is selected for evaluating the performance of the proposed method. About 97.75% of the accuracy is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信