预防性维修下的多目标维修计划

IF 1.8 Q3 ENGINEERING, INDUSTRIAL
A. Al-Refaie, Hiba Almowas
{"title":"预防性维修下的多目标维修计划","authors":"A. Al-Refaie, Hiba Almowas","doi":"10.1108/jqme-05-2021-0035","DOIUrl":null,"url":null,"abstract":"PurposeThis research developed and examined a mathematical model for concurrent corrective and preventive maintenance policy of a system of series configuration.Design/methodology/approachA mathematical model was developed to maximize availability, and maximal net revenues, and minimal cost. Different probability distributions for time to failure and time to repair were considered. The model was then implemented on a real case study, which was studied under corrective maintenance policy and concurrent corrective and preventive policy.FindingsA comparison between results at current policy (90 days) and optimal period of corrective and preventive policy was conducted. It was found that availability, profit was increased from 94.4% and $20.091 – 96.5% and $24.803, respectively. Further, the cost was reduced from $1104.8 to $797.22.Research limitations/implicationsThe proposed optimization model can be adopted in planning maintenance activities for a single machine as well as for a system of series configuration machines under various probability distributions.Practical implicationsThe proposed model can significantly enhance performance of the production as well as maintenance systems. In addition, the developed model may support maintenance engineering in effective management of maintenance resources and the performance of its activities.Originality/valueThis research considers a mathematical model with multi-objective functions and distinct probability distributions for time-to-failure for a system of series machines. Moreover, appropriate approximation solution was deployed to find integral of some functions. Finally, it provides maintenance planning for a single machine or a series of machines.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-objective maintenance planning under preventive maintenance\",\"authors\":\"A. Al-Refaie, Hiba Almowas\",\"doi\":\"10.1108/jqme-05-2021-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis research developed and examined a mathematical model for concurrent corrective and preventive maintenance policy of a system of series configuration.Design/methodology/approachA mathematical model was developed to maximize availability, and maximal net revenues, and minimal cost. Different probability distributions for time to failure and time to repair were considered. The model was then implemented on a real case study, which was studied under corrective maintenance policy and concurrent corrective and preventive policy.FindingsA comparison between results at current policy (90 days) and optimal period of corrective and preventive policy was conducted. It was found that availability, profit was increased from 94.4% and $20.091 – 96.5% and $24.803, respectively. Further, the cost was reduced from $1104.8 to $797.22.Research limitations/implicationsThe proposed optimization model can be adopted in planning maintenance activities for a single machine as well as for a system of series configuration machines under various probability distributions.Practical implicationsThe proposed model can significantly enhance performance of the production as well as maintenance systems. In addition, the developed model may support maintenance engineering in effective management of maintenance resources and the performance of its activities.Originality/valueThis research considers a mathematical model with multi-objective functions and distinct probability distributions for time-to-failure for a system of series machines. Moreover, appropriate approximation solution was deployed to find integral of some functions. Finally, it provides maintenance planning for a single machine or a series of machines.\",\"PeriodicalId\":16938,\"journal\":{\"name\":\"Journal of Quality in Maintenance Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality in Maintenance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jqme-05-2021-0035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-05-2021-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

目的本研究建立并检验了串联配置系统并行纠正和预防性维护策略的数学模型。设计/方法/方法开发了一个数学模型,以最大限度地提高可用性、最大限度地实现净收入和最低成本。考虑了故障时间和修复时间的不同概率分布。然后,在实际案例研究中实施了该模型,并在纠正性维护政策和同时纠正和预防政策下进行了研究。结果对现行政策(90天)的结果与纠正和预防政策的最佳期限进行了比较。研究发现,可用性和利润分别从94.4%和20.091美元增加到96.5%和24.803美元。此外,成本从1104.8美元降低到797.22美元。研究局限性/含义所提出的优化模型可用于规划各种概率分布下单机以及串联配置机器系统的维护活动。实际意义所提出的模型可以显著提高生产和维护系统的性能。此外,所开发的模型可以支持维修工程对维修资源及其活动的有效管理。原创性/价值本研究考虑了一个具有多目标函数和不同概率分布的数学模型,用于串联机器系统的故障时间。此外,还利用适当的近似解来求某些函数的积分。最后,它为单个机器或一系列机器提供维护计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective maintenance planning under preventive maintenance
PurposeThis research developed and examined a mathematical model for concurrent corrective and preventive maintenance policy of a system of series configuration.Design/methodology/approachA mathematical model was developed to maximize availability, and maximal net revenues, and minimal cost. Different probability distributions for time to failure and time to repair were considered. The model was then implemented on a real case study, which was studied under corrective maintenance policy and concurrent corrective and preventive policy.FindingsA comparison between results at current policy (90 days) and optimal period of corrective and preventive policy was conducted. It was found that availability, profit was increased from 94.4% and $20.091 – 96.5% and $24.803, respectively. Further, the cost was reduced from $1104.8 to $797.22.Research limitations/implicationsThe proposed optimization model can be adopted in planning maintenance activities for a single machine as well as for a system of series configuration machines under various probability distributions.Practical implicationsThe proposed model can significantly enhance performance of the production as well as maintenance systems. In addition, the developed model may support maintenance engineering in effective management of maintenance resources and the performance of its activities.Originality/valueThis research considers a mathematical model with multi-objective functions and distinct probability distributions for time-to-failure for a system of series machines. Moreover, appropriate approximation solution was deployed to find integral of some functions. Finally, it provides maintenance planning for a single machine or a series of machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality in Maintenance Engineering
Journal of Quality in Maintenance Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
4.00
自引率
13.30%
发文量
24
期刊介绍: This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信