超高能伽马射线天文学

IF 9.1 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
Z. Cao, Song-zhan Chen, Ruo-Yu Liu, Rui-zhi Yang
{"title":"超高能伽马射线天文学","authors":"Z. Cao, Song-zhan Chen, Ruo-Yu Liu, Rui-zhi Yang","doi":"10.1146/annurev-nucl-112822-025357","DOIUrl":null,"url":null,"abstract":"Ultra-high-energy (UHE, >0.1 PeV) γ-ray astronomy is rapidly evolving into an expanding branch of γ-ray astronomy with the surprising discovery of 12 PeVatrons and the detection of a handful of photons above 1 PeV. Nearly all known celestial object types that have emissions in the TeV band are found also to emit UHE photons. UHE γ-rays have a well-defined horizon inside our Galaxy due to the absorption of infrared and cosmic microwave backgrounds in the Universe. In the last 30 years, traditional cosmic ray (CR) measurement techniques have enabled the detection of UHE γ-rays and opened the last observation window. For leptonic sources, UHE radiation is in the deep Klein–Nishina regime, which is largely suppressed. Therefore, UHE γ-ray detection will be helpful in locating and identifying hadronic radiation sources, tracing the historic pursuit for the origin of CRs around the knee of the spectrum. The Crab Nebula is the focus of attention with measured photon emissions up to 1 PeV. In the absence of hadronic processes, these emissions may indicate the existence of an extreme accelerator of e+ e−. Use of CR extensive air shower detection techniques broadens the field of view of the source observations, enabling measurement of UHE radiation surrounding the sources. These observations can probe the particle propagation inside and outside the accelerators and the subsequent injection/escape into the interstellar medium. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-High-Energy Gamma-Ray Astronomy\",\"authors\":\"Z. Cao, Song-zhan Chen, Ruo-Yu Liu, Rui-zhi Yang\",\"doi\":\"10.1146/annurev-nucl-112822-025357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-high-energy (UHE, >0.1 PeV) γ-ray astronomy is rapidly evolving into an expanding branch of γ-ray astronomy with the surprising discovery of 12 PeVatrons and the detection of a handful of photons above 1 PeV. Nearly all known celestial object types that have emissions in the TeV band are found also to emit UHE photons. UHE γ-rays have a well-defined horizon inside our Galaxy due to the absorption of infrared and cosmic microwave backgrounds in the Universe. In the last 30 years, traditional cosmic ray (CR) measurement techniques have enabled the detection of UHE γ-rays and opened the last observation window. For leptonic sources, UHE radiation is in the deep Klein–Nishina regime, which is largely suppressed. Therefore, UHE γ-ray detection will be helpful in locating and identifying hadronic radiation sources, tracing the historic pursuit for the origin of CRs around the knee of the spectrum. The Crab Nebula is the focus of attention with measured photon emissions up to 1 PeV. In the absence of hadronic processes, these emissions may indicate the existence of an extreme accelerator of e+ e−. Use of CR extensive air shower detection techniques broadens the field of view of the source observations, enabling measurement of UHE radiation surrounding the sources. These observations can probe the particle propagation inside and outside the accelerators and the subsequent injection/escape into the interstellar medium. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8090,\"journal\":{\"name\":\"Annual Review of Nuclear and Particle Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Nuclear and Particle Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-112822-025357\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-112822-025357","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

超高能(UHE,>0.1 PeV)γ射线天文学正在迅速发展成为γ射线天文学的一个不断扩展的分支,它出人意料地发现了12个PeV,并探测到了少数1 PeV以上的光子。几乎所有已知的发射在TeV波段的天体类型都会发射UHE光子。由于宇宙中红外和宇宙微波背景的吸收,UHEγ射线在我们的星系内有一个明确的视界。在过去的30年里,传统的宇宙射线测量技术使UHEγ射线的探测成为可能,并打开了最后的观测窗口。对于轻子源,UHE辐射处于克莱因-西那深区,这在很大程度上被抑制。因此,UHEγ射线探测将有助于定位和识别强子辐射源,追踪光谱拐点附近CR起源的历史追求。蟹状星云是人们关注的焦点,测量到的光子发射高达1PeV。在没有强子过程的情况下,这些发射可能表明存在e+e−的极端加速器。CR广泛的空气簇射探测技术的使用拓宽了源观测的视野,使得能够测量源周围的UHE辐射。这些观测可以探测粒子在加速器内外的传播,以及随后注入/逃逸到星际介质中的情况。《核与粒子科学年度评论》第73卷预计最终在线出版日期为2023年9月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-High-Energy Gamma-Ray Astronomy
Ultra-high-energy (UHE, >0.1 PeV) γ-ray astronomy is rapidly evolving into an expanding branch of γ-ray astronomy with the surprising discovery of 12 PeVatrons and the detection of a handful of photons above 1 PeV. Nearly all known celestial object types that have emissions in the TeV band are found also to emit UHE photons. UHE γ-rays have a well-defined horizon inside our Galaxy due to the absorption of infrared and cosmic microwave backgrounds in the Universe. In the last 30 years, traditional cosmic ray (CR) measurement techniques have enabled the detection of UHE γ-rays and opened the last observation window. For leptonic sources, UHE radiation is in the deep Klein–Nishina regime, which is largely suppressed. Therefore, UHE γ-ray detection will be helpful in locating and identifying hadronic radiation sources, tracing the historic pursuit for the origin of CRs around the knee of the spectrum. The Crab Nebula is the focus of attention with measured photon emissions up to 1 PeV. In the absence of hadronic processes, these emissions may indicate the existence of an extreme accelerator of e+ e−. Use of CR extensive air shower detection techniques broadens the field of view of the source observations, enabling measurement of UHE radiation surrounding the sources. These observations can probe the particle propagation inside and outside the accelerators and the subsequent injection/escape into the interstellar medium. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.50
自引率
0.80%
发文量
18
期刊介绍: The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation. One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信