Thomas J. Galarneau Jr., Xubin Zeng, Ross D. Dixon, Amir Ouyed, Hui Su, Wenjun Cui
{"title":"热带中尺度对流系统形成环境","authors":"Thomas J. Galarneau Jr., Xubin Zeng, Ross D. Dixon, Amir Ouyed, Hui Su, Wenjun Cui","doi":"10.1002/asl.1152","DOIUrl":null,"url":null,"abstract":"<p>Mesoscale convective systems (MCSs) in the tropics play an integral role in the water cycle, are associated with local hazardous weather conditions, and have significant remote impacts on the midlatitude jet stream. Although it is known that MCSs occur in relatively moist environments, it is unclear how far in advance favorable ingredients (lift, instability, and moisture) in the mesoscale environment precede MCS formation. In this study, an automated MCS tracking algorithm and global reanalyses are used to examine the pre-MCS environment for 3295 MCSs that occurred in the tropics in a 3-month period. Results showed that increased water vapor and mesoscale ascent implied by low-level convergence and upper-level divergence preceded MCS formation by up to 24 h. Regional variations in pre-MCS environment conditions were apparent and are discussed. Future work will study to what extent these moisture and wind anomalies can be used to predict MCS formation.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1152","citationCount":"1","resultStr":"{\"title\":\"Tropical mesoscale convective system formation environments\",\"authors\":\"Thomas J. Galarneau Jr., Xubin Zeng, Ross D. Dixon, Amir Ouyed, Hui Su, Wenjun Cui\",\"doi\":\"10.1002/asl.1152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mesoscale convective systems (MCSs) in the tropics play an integral role in the water cycle, are associated with local hazardous weather conditions, and have significant remote impacts on the midlatitude jet stream. Although it is known that MCSs occur in relatively moist environments, it is unclear how far in advance favorable ingredients (lift, instability, and moisture) in the mesoscale environment precede MCS formation. In this study, an automated MCS tracking algorithm and global reanalyses are used to examine the pre-MCS environment for 3295 MCSs that occurred in the tropics in a 3-month period. Results showed that increased water vapor and mesoscale ascent implied by low-level convergence and upper-level divergence preceded MCS formation by up to 24 h. Regional variations in pre-MCS environment conditions were apparent and are discussed. Future work will study to what extent these moisture and wind anomalies can be used to predict MCS formation.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1152\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1152\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1152","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Tropical mesoscale convective system formation environments
Mesoscale convective systems (MCSs) in the tropics play an integral role in the water cycle, are associated with local hazardous weather conditions, and have significant remote impacts on the midlatitude jet stream. Although it is known that MCSs occur in relatively moist environments, it is unclear how far in advance favorable ingredients (lift, instability, and moisture) in the mesoscale environment precede MCS formation. In this study, an automated MCS tracking algorithm and global reanalyses are used to examine the pre-MCS environment for 3295 MCSs that occurred in the tropics in a 3-month period. Results showed that increased water vapor and mesoscale ascent implied by low-level convergence and upper-level divergence preceded MCS formation by up to 24 h. Regional variations in pre-MCS environment conditions were apparent and are discussed. Future work will study to what extent these moisture and wind anomalies can be used to predict MCS formation.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.