基于深层目的的软骨肉瘤药物发现

Jianrui Li , Mingyue Shi , Zhiwei Chen , Yuyan Pan
{"title":"基于深层目的的软骨肉瘤药物发现","authors":"Jianrui Li ,&nbsp;Mingyue Shi ,&nbsp;Zhiwei Chen ,&nbsp;Yuyan Pan","doi":"10.1016/j.cjprs.2022.10.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Chondrosarcoma (CS) is the second most common primary bone tumor, accounting for approximately 30% of all malignant bone tumors. Unfortunately, the efficacy of currently available drug therapies is limited. Therefore, this study aimed to explore drug therapies for CS using novel computational methods.</p></div><div><h3>Methods</h3><p>In this study, text mining, GeneCodis STRING, and Cytoscape were used to identify genes closely related to CS, and the Drug Gene Interaction Database (DGIdb) was used to select drugs targeting the genes. Drug-target interaction prediction was performed using DeepPurpose, to finally obtain candidate drugs with the highest predicted binding affinities.</p></div><div><h3>Results</h3><p>Text-mining searches identified 168 genes related to CS. Gene enrichment and protein-protein interaction analysis generated 14 genes representing 10 pathways using GeneCodis, STRING, and Cytoscape. Seventy drugs targeting genes closely related to CS were analyzed using DGIdb. DeepPurpose recommended 25 drugs, including integrin beta 3 inhibitors, hypoxia-inducible factor 1 alpha inhibitors, E1A binding protein P300 inhibitors, vascular endothelial growth factor A inhibitors, AKT1 inhibitors, tumor necrosis factor inhibitors, transforming growth factor beta 1 inhibitors, interleukin 6 inhibitors, mitogen-activated protein kinase 1 inhibitors, and protein tyrosine kinase inhibitors.</p></div><div><h3>Conclusion</h3><p>Drug discovery using <em>in silico</em> text mining and DeepPurpose may be an effective method to explore drugs targeting genes related to CS.</p></div>","PeriodicalId":65600,"journal":{"name":"Chinese Journal of Plastic and Reconstructive Surgery","volume":"4 4","pages":"Pages 158-165"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096691122000760/pdfft?md5=46cd87d0aeec5cc0806f58635f76e9d5&pid=1-s2.0-S2096691122000760-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DeepPurpose-based drug discovery in chondrosarcoma\",\"authors\":\"Jianrui Li ,&nbsp;Mingyue Shi ,&nbsp;Zhiwei Chen ,&nbsp;Yuyan Pan\",\"doi\":\"10.1016/j.cjprs.2022.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Chondrosarcoma (CS) is the second most common primary bone tumor, accounting for approximately 30% of all malignant bone tumors. Unfortunately, the efficacy of currently available drug therapies is limited. Therefore, this study aimed to explore drug therapies for CS using novel computational methods.</p></div><div><h3>Methods</h3><p>In this study, text mining, GeneCodis STRING, and Cytoscape were used to identify genes closely related to CS, and the Drug Gene Interaction Database (DGIdb) was used to select drugs targeting the genes. Drug-target interaction prediction was performed using DeepPurpose, to finally obtain candidate drugs with the highest predicted binding affinities.</p></div><div><h3>Results</h3><p>Text-mining searches identified 168 genes related to CS. Gene enrichment and protein-protein interaction analysis generated 14 genes representing 10 pathways using GeneCodis, STRING, and Cytoscape. Seventy drugs targeting genes closely related to CS were analyzed using DGIdb. DeepPurpose recommended 25 drugs, including integrin beta 3 inhibitors, hypoxia-inducible factor 1 alpha inhibitors, E1A binding protein P300 inhibitors, vascular endothelial growth factor A inhibitors, AKT1 inhibitors, tumor necrosis factor inhibitors, transforming growth factor beta 1 inhibitors, interleukin 6 inhibitors, mitogen-activated protein kinase 1 inhibitors, and protein tyrosine kinase inhibitors.</p></div><div><h3>Conclusion</h3><p>Drug discovery using <em>in silico</em> text mining and DeepPurpose may be an effective method to explore drugs targeting genes related to CS.</p></div>\",\"PeriodicalId\":65600,\"journal\":{\"name\":\"Chinese Journal of Plastic and Reconstructive Surgery\",\"volume\":\"4 4\",\"pages\":\"Pages 158-165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096691122000760/pdfft?md5=46cd87d0aeec5cc0806f58635f76e9d5&pid=1-s2.0-S2096691122000760-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Plastic and Reconstructive Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096691122000760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Plastic and Reconstructive Surgery","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096691122000760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软骨肉瘤(CS)是第二常见的原发性骨肿瘤,约占所有恶性骨肿瘤的30%。不幸的是,目前可用的药物治疗效果有限。因此,本研究旨在利用新的计算方法探索CS的药物治疗方法。方法本研究采用文本挖掘、GeneCodis STRING和Cytoscape等方法鉴定与CS密切相关的基因,并利用药物基因相互作用数据库(Drug Gene Interaction Database, DGIdb)筛选靶向基因的药物。利用deepurpose进行药物-靶标相互作用预测,最终获得预测结合亲和力最高的候选药物。结果文本挖掘检索鉴定出168个与CS相关的基因。基因富集和蛋白相互作用分析使用GeneCodis, STRING和Cytoscape生成了代表10条途径的14个基因。使用DGIdb分析了70个与CS密切相关的药物靶向基因。deepurpose推荐了25种药物,包括整合素β 3抑制剂、缺氧诱导因子1 α抑制剂、E1A结合蛋白P300抑制剂、血管内皮生长因子A抑制剂、AKT1抑制剂、肿瘤坏死因子抑制剂、转化生长因子β 1抑制剂、白细胞介素6抑制剂、丝裂原活化蛋白激酶1抑制剂、蛋白酪氨酸激酶抑制剂。结论基于计算机文本挖掘和DeepPurpose的药物发现可能是探索CS相关基因靶向药物的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepPurpose-based drug discovery in chondrosarcoma

Background

Chondrosarcoma (CS) is the second most common primary bone tumor, accounting for approximately 30% of all malignant bone tumors. Unfortunately, the efficacy of currently available drug therapies is limited. Therefore, this study aimed to explore drug therapies for CS using novel computational methods.

Methods

In this study, text mining, GeneCodis STRING, and Cytoscape were used to identify genes closely related to CS, and the Drug Gene Interaction Database (DGIdb) was used to select drugs targeting the genes. Drug-target interaction prediction was performed using DeepPurpose, to finally obtain candidate drugs with the highest predicted binding affinities.

Results

Text-mining searches identified 168 genes related to CS. Gene enrichment and protein-protein interaction analysis generated 14 genes representing 10 pathways using GeneCodis, STRING, and Cytoscape. Seventy drugs targeting genes closely related to CS were analyzed using DGIdb. DeepPurpose recommended 25 drugs, including integrin beta 3 inhibitors, hypoxia-inducible factor 1 alpha inhibitors, E1A binding protein P300 inhibitors, vascular endothelial growth factor A inhibitors, AKT1 inhibitors, tumor necrosis factor inhibitors, transforming growth factor beta 1 inhibitors, interleukin 6 inhibitors, mitogen-activated protein kinase 1 inhibitors, and protein tyrosine kinase inhibitors.

Conclusion

Drug discovery using in silico text mining and DeepPurpose may be an effective method to explore drugs targeting genes related to CS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Plastic and Reconstructive Surgery
Chinese Journal of Plastic and Reconstructive Surgery Surgery, Otorhinolaryngology and Facial Plastic Surgery, Pathology and Medical Technology, Transplantation
CiteScore
0.40
自引率
0.00%
发文量
115
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信