生物医学工程进展介绍;第2期第2卷

IF 5 Q1 ENGINEERING, BIOMEDICAL
M. Sitti
{"title":"生物医学工程进展介绍;第2期第2卷","authors":"M. Sitti","doi":"10.1088/2516-1091/ab871a","DOIUrl":null,"url":null,"abstract":"Progress in Biomedical Engineering is a new interdisciplinary journal publishing high-quality authoritative reviews and opinion pieces in the most significant and exciting areas of biomedical engineering research. Invited content by leading experts on the current state of the science and emerging trends aims to fuel discussion on the future direction of research. In our first and second issues this year, we have four topical review articles. In the first review article related to medical devices, Xia et al present and discuss intravascular sensors to assess unstable plaques and their compositions. Vulnerable atherosclerotic plaques can rapture, which can create acute cardiovascular events and sudden cardiac deaths as a major health issue all around the world. Existing methods such as coronary angiography lacks the capacity to provide detailed information about exact lipid-rich, fibrotic or calcified type of properties of the lesion. Therefore, novel catheter technologies have been proposed for the assessment of atherosclerotic plaques, which integrates intravascular ultrasound with photoacoustic microscopy or optical coherence tomography and utilizes stretchable electrodes for electrochemical impedance spectroscopy. While these technologies are promising for the identification of the complexity and composition of potentially unstable plaques in animal and human trials, real-time detection of such plaques in clinics is still a significant challenge. This article highlights existing and emerging intravascular sensors to assess unstable plaques and their compositions. The authors report the advantages, limitations, future directions, and potential clinical applications of such sensors. the fundamentals and state-of-the-art the future of vascularization of engineered tissues, which is a grand challenge in engineering regenerative A new recent tissue engineering sub-field, called vascular tissue engineering, to a","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/2516-1091/ab871a","citationCount":"0","resultStr":"{\"title\":\"Introducing Progress in Biomedical Engineering; Issue 2 Vol 2\",\"authors\":\"M. Sitti\",\"doi\":\"10.1088/2516-1091/ab871a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Progress in Biomedical Engineering is a new interdisciplinary journal publishing high-quality authoritative reviews and opinion pieces in the most significant and exciting areas of biomedical engineering research. Invited content by leading experts on the current state of the science and emerging trends aims to fuel discussion on the future direction of research. In our first and second issues this year, we have four topical review articles. In the first review article related to medical devices, Xia et al present and discuss intravascular sensors to assess unstable plaques and their compositions. Vulnerable atherosclerotic plaques can rapture, which can create acute cardiovascular events and sudden cardiac deaths as a major health issue all around the world. Existing methods such as coronary angiography lacks the capacity to provide detailed information about exact lipid-rich, fibrotic or calcified type of properties of the lesion. Therefore, novel catheter technologies have been proposed for the assessment of atherosclerotic plaques, which integrates intravascular ultrasound with photoacoustic microscopy or optical coherence tomography and utilizes stretchable electrodes for electrochemical impedance spectroscopy. While these technologies are promising for the identification of the complexity and composition of potentially unstable plaques in animal and human trials, real-time detection of such plaques in clinics is still a significant challenge. This article highlights existing and emerging intravascular sensors to assess unstable plaques and their compositions. The authors report the advantages, limitations, future directions, and potential clinical applications of such sensors. the fundamentals and state-of-the-art the future of vascularization of engineered tissues, which is a grand challenge in engineering regenerative A new recent tissue engineering sub-field, called vascular tissue engineering, to a\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/2516-1091/ab871a\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/ab871a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ab871a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

《生物医学工程进展》是一本新的跨学科期刊,在生物医学工程研究的最重要和最令人兴奋的领域发表高质量的权威评论和观点文章。主要专家邀请的关于科学现状和新兴趋势的内容旨在推动对未来研究方向的讨论。在今年的第一期和第二期中,我们有四篇专题评论文章。在第一篇与医疗器械相关的综述文章中,Xia等人介绍并讨论了血管内传感器来评估不稳定斑块及其成分。脆弱的动脉粥样硬化斑块可能会破裂,这可能会导致急性心血管事件和心脏性猝死,这是世界各地的一个主要健康问题。现有的方法,如冠状动脉造影,缺乏提供关于确切的富含脂质、纤维化或钙化类型的病变特性的详细信息的能力。因此,已经提出了用于评估动脉粥样硬化斑块的新型导管技术,该技术将血管内超声与光声显微镜或光学相干断层扫描相结合,并利用可拉伸电极进行电化学阻抗谱。尽管这些技术有望在动物和人体试验中识别潜在不稳定斑块的复杂性和组成,但在诊所中实时检测此类斑块仍然是一个重大挑战。本文重点介绍了现有和新兴的血管内传感器,用于评估不稳定斑块及其成分。作者报告了这种传感器的优点、局限性、未来方向和潜在的临床应用。工程组织血管化的基本原理和最新技术,这是工程再生中的一个巨大挑战。一个新的组织工程子领域,称为血管组织工程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introducing Progress in Biomedical Engineering; Issue 2 Vol 2
Progress in Biomedical Engineering is a new interdisciplinary journal publishing high-quality authoritative reviews and opinion pieces in the most significant and exciting areas of biomedical engineering research. Invited content by leading experts on the current state of the science and emerging trends aims to fuel discussion on the future direction of research. In our first and second issues this year, we have four topical review articles. In the first review article related to medical devices, Xia et al present and discuss intravascular sensors to assess unstable plaques and their compositions. Vulnerable atherosclerotic plaques can rapture, which can create acute cardiovascular events and sudden cardiac deaths as a major health issue all around the world. Existing methods such as coronary angiography lacks the capacity to provide detailed information about exact lipid-rich, fibrotic or calcified type of properties of the lesion. Therefore, novel catheter technologies have been proposed for the assessment of atherosclerotic plaques, which integrates intravascular ultrasound with photoacoustic microscopy or optical coherence tomography and utilizes stretchable electrodes for electrochemical impedance spectroscopy. While these technologies are promising for the identification of the complexity and composition of potentially unstable plaques in animal and human trials, real-time detection of such plaques in clinics is still a significant challenge. This article highlights existing and emerging intravascular sensors to assess unstable plaques and their compositions. The authors report the advantages, limitations, future directions, and potential clinical applications of such sensors. the fundamentals and state-of-the-art the future of vascularization of engineered tissues, which is a grand challenge in engineering regenerative A new recent tissue engineering sub-field, called vascular tissue engineering, to a
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信