可吸收镁合金骨植入物应用的羟基磷灰石涂层的纳米压痕和纳米刮擦。

P. Lemoine, J. Acheson, S. McKillop, J. J. van den Beucken, Joanna Ward, A. Boyd, B. Meenan
{"title":"可吸收镁合金骨植入物应用的羟基磷灰石涂层的纳米压痕和纳米刮擦。","authors":"P. Lemoine, J. Acheson, S. McKillop, J. J. van den Beucken, Joanna Ward, A. Boyd, B. Meenan","doi":"10.2139/ssrn.4073499","DOIUrl":null,"url":null,"abstract":"The corrosion rate of Mg alloys is currently too high for viable resorbable implant applications. One possible solution is to coat the alloy with a hydroxyapatite (HA) layer to slow the corrosion and promote bone growth. As such coatings can be under severe stresses during implant insertion, we present a nano-mechanical and nano-tribological investigation of RF-sputtered HA films on AZ31 Mg alloy substrates. EDX and XRD analysis indicate that as-deposited coatings are amorphous and Ca-deficient whereas rapid thermal annealing results in c-axis orientation and near-stoichiometric composition. Analysis of the nanoindentation data using a thin film model shows that annealing increases the coating's intrinsic hardness (H) and strain at break (H/E) values, from 2.7 GPa to 9.4 GPa and from 0.043 to 0.079, respectively. In addition, despite being rougher, the annealed samples display better wear resistance; a sign that the rapid thermal annealing does not compromise their interfacial strength and that these systems have potential for resorbable bone implant applications.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"133 1","pages":"105306"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applications.\",\"authors\":\"P. Lemoine, J. Acheson, S. McKillop, J. J. van den Beucken, Joanna Ward, A. Boyd, B. Meenan\",\"doi\":\"10.2139/ssrn.4073499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The corrosion rate of Mg alloys is currently too high for viable resorbable implant applications. One possible solution is to coat the alloy with a hydroxyapatite (HA) layer to slow the corrosion and promote bone growth. As such coatings can be under severe stresses during implant insertion, we present a nano-mechanical and nano-tribological investigation of RF-sputtered HA films on AZ31 Mg alloy substrates. EDX and XRD analysis indicate that as-deposited coatings are amorphous and Ca-deficient whereas rapid thermal annealing results in c-axis orientation and near-stoichiometric composition. Analysis of the nanoindentation data using a thin film model shows that annealing increases the coating's intrinsic hardness (H) and strain at break (H/E) values, from 2.7 GPa to 9.4 GPa and from 0.043 to 0.079, respectively. In addition, despite being rougher, the annealed samples display better wear resistance; a sign that the rapid thermal annealing does not compromise their interfacial strength and that these systems have potential for resorbable bone implant applications.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"133 1\",\"pages\":\"105306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4073499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4073499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

镁合金的腐蚀速率目前对于可行的可吸收植入物应用来说太高。一种可能的解决方案是在合金上涂覆羟基磷灰石(HA)层,以减缓腐蚀并促进骨生长。由于这种涂层在植入过程中可能会受到严重的应力,我们对AZ31镁合金基底上的射频溅射HA膜进行了纳米机械和纳米摩擦学研究。EDX和XRD分析表明,沉积的涂层是无定形的和缺钙的,而快速热退火导致c轴取向和接近化学计量组成。使用薄膜模型对纳米压痕数据的分析表明,退火使涂层的固有硬度(H)和断裂应变(H/E)值分别从2.7GPa增加到9.4GPa和从0.043增加到0.079。此外,尽管退火样品更粗糙,但其耐磨性更好;这表明快速热退火不会损害它们的界面强度,并且这些系统具有可吸收骨植入物应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applications.
The corrosion rate of Mg alloys is currently too high for viable resorbable implant applications. One possible solution is to coat the alloy with a hydroxyapatite (HA) layer to slow the corrosion and promote bone growth. As such coatings can be under severe stresses during implant insertion, we present a nano-mechanical and nano-tribological investigation of RF-sputtered HA films on AZ31 Mg alloy substrates. EDX and XRD analysis indicate that as-deposited coatings are amorphous and Ca-deficient whereas rapid thermal annealing results in c-axis orientation and near-stoichiometric composition. Analysis of the nanoindentation data using a thin film model shows that annealing increases the coating's intrinsic hardness (H) and strain at break (H/E) values, from 2.7 GPa to 9.4 GPa and from 0.043 to 0.079, respectively. In addition, despite being rougher, the annealed samples display better wear resistance; a sign that the rapid thermal annealing does not compromise their interfacial strength and that these systems have potential for resorbable bone implant applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信