P. Lemoine, J. Acheson, S. McKillop, J. J. van den Beucken, Joanna Ward, A. Boyd, B. Meenan
{"title":"可吸收镁合金骨植入物应用的羟基磷灰石涂层的纳米压痕和纳米刮擦。","authors":"P. Lemoine, J. Acheson, S. McKillop, J. J. van den Beucken, Joanna Ward, A. Boyd, B. Meenan","doi":"10.2139/ssrn.4073499","DOIUrl":null,"url":null,"abstract":"The corrosion rate of Mg alloys is currently too high for viable resorbable implant applications. One possible solution is to coat the alloy with a hydroxyapatite (HA) layer to slow the corrosion and promote bone growth. As such coatings can be under severe stresses during implant insertion, we present a nano-mechanical and nano-tribological investigation of RF-sputtered HA films on AZ31 Mg alloy substrates. EDX and XRD analysis indicate that as-deposited coatings are amorphous and Ca-deficient whereas rapid thermal annealing results in c-axis orientation and near-stoichiometric composition. Analysis of the nanoindentation data using a thin film model shows that annealing increases the coating's intrinsic hardness (H) and strain at break (H/E) values, from 2.7 GPa to 9.4 GPa and from 0.043 to 0.079, respectively. In addition, despite being rougher, the annealed samples display better wear resistance; a sign that the rapid thermal annealing does not compromise their interfacial strength and that these systems have potential for resorbable bone implant applications.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"133 1","pages":"105306"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applications.\",\"authors\":\"P. Lemoine, J. Acheson, S. McKillop, J. J. van den Beucken, Joanna Ward, A. Boyd, B. Meenan\",\"doi\":\"10.2139/ssrn.4073499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The corrosion rate of Mg alloys is currently too high for viable resorbable implant applications. One possible solution is to coat the alloy with a hydroxyapatite (HA) layer to slow the corrosion and promote bone growth. As such coatings can be under severe stresses during implant insertion, we present a nano-mechanical and nano-tribological investigation of RF-sputtered HA films on AZ31 Mg alloy substrates. EDX and XRD analysis indicate that as-deposited coatings are amorphous and Ca-deficient whereas rapid thermal annealing results in c-axis orientation and near-stoichiometric composition. Analysis of the nanoindentation data using a thin film model shows that annealing increases the coating's intrinsic hardness (H) and strain at break (H/E) values, from 2.7 GPa to 9.4 GPa and from 0.043 to 0.079, respectively. In addition, despite being rougher, the annealed samples display better wear resistance; a sign that the rapid thermal annealing does not compromise their interfacial strength and that these systems have potential for resorbable bone implant applications.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"133 1\",\"pages\":\"105306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4073499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4073499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applications.
The corrosion rate of Mg alloys is currently too high for viable resorbable implant applications. One possible solution is to coat the alloy with a hydroxyapatite (HA) layer to slow the corrosion and promote bone growth. As such coatings can be under severe stresses during implant insertion, we present a nano-mechanical and nano-tribological investigation of RF-sputtered HA films on AZ31 Mg alloy substrates. EDX and XRD analysis indicate that as-deposited coatings are amorphous and Ca-deficient whereas rapid thermal annealing results in c-axis orientation and near-stoichiometric composition. Analysis of the nanoindentation data using a thin film model shows that annealing increases the coating's intrinsic hardness (H) and strain at break (H/E) values, from 2.7 GPa to 9.4 GPa and from 0.043 to 0.079, respectively. In addition, despite being rougher, the annealed samples display better wear resistance; a sign that the rapid thermal annealing does not compromise their interfacial strength and that these systems have potential for resorbable bone implant applications.