拉脱维亚短期通货膨胀预测模型及其评估

IF 1.2 3区 经济学 Q3 ECONOMICS
Andrejs Bessonovs, O. Krasnopjorovs
{"title":"拉脱维亚短期通货膨胀预测模型及其评估","authors":"Andrejs Bessonovs, O. Krasnopjorovs","doi":"10.1080/1406099X.2021.2003997","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper builds a short-term inflation projections (STIP) model for Latvia. The model is designed to forecast highly disaggregated consumer prices using cointegrated ARDL approach of [Pesaran, M., & Shin, Y. (1998). An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis. Econometric Society Monographs, 31, 371–413.]. We assess the forecast accuracy of STIP model using out-of-sample forecast exercise and show that our model outperforms both aggregated and disaggregated AR(1) benchmarks. Across inflation components, the forecast accuracy gains are 20–30% forecasting 3 months ahead and 15–55% forecasting 12 months ahead.","PeriodicalId":43756,"journal":{"name":"Baltic Journal of Economics","volume":"21 1","pages":"184 - 204"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term inflation projections model and its assessment in Latvia\",\"authors\":\"Andrejs Bessonovs, O. Krasnopjorovs\",\"doi\":\"10.1080/1406099X.2021.2003997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper builds a short-term inflation projections (STIP) model for Latvia. The model is designed to forecast highly disaggregated consumer prices using cointegrated ARDL approach of [Pesaran, M., & Shin, Y. (1998). An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis. Econometric Society Monographs, 31, 371–413.]. We assess the forecast accuracy of STIP model using out-of-sample forecast exercise and show that our model outperforms both aggregated and disaggregated AR(1) benchmarks. Across inflation components, the forecast accuracy gains are 20–30% forecasting 3 months ahead and 15–55% forecasting 12 months ahead.\",\"PeriodicalId\":43756,\"journal\":{\"name\":\"Baltic Journal of Economics\",\"volume\":\"21 1\",\"pages\":\"184 - 204\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baltic Journal of Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/1406099X.2021.2003997\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/1406099X.2021.2003997","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文建立了拉脱维亚的短期通货膨胀预测(STIP)模型。该模型旨在使用Pesaran, M., & Shin, Y.(1998)的协整ARDL方法预测高度分解的消费者价格。协整分析的自回归分布滞后建模方法。计量经济学会专论,31,371-413。我们使用样本外预测练习评估了STIP模型的预测准确性,并表明我们的模型优于聚合和分解AR(1)基准。在通货膨胀因素中,预测3个月的准确性提高了20-30%,预测12个月的准确性提高了15-55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term inflation projections model and its assessment in Latvia
ABSTRACT This paper builds a short-term inflation projections (STIP) model for Latvia. The model is designed to forecast highly disaggregated consumer prices using cointegrated ARDL approach of [Pesaran, M., & Shin, Y. (1998). An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis. Econometric Society Monographs, 31, 371–413.]. We assess the forecast accuracy of STIP model using out-of-sample forecast exercise and show that our model outperforms both aggregated and disaggregated AR(1) benchmarks. Across inflation components, the forecast accuracy gains are 20–30% forecasting 3 months ahead and 15–55% forecasting 12 months ahead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
7
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信