求助PDF
{"title":"关于具有数字依赖性的简单正规数","authors":"Verónica Becher, Agustín Marchionna, Gérald Tenenbaum","doi":"10.1112/mtk.12216","DOIUrl":null,"url":null,"abstract":"<p>Given an integer <math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$b\\geqslant 2$</annotation>\n </semantics></math> and a set <math>\n <semantics>\n <mi>P</mi>\n <annotation>${\\EuScript P}$</annotation>\n </semantics></math> of prime numbers, the set <math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>P</mi>\n </msub>\n <annotation>${\\EuScript T}_{\\EuScript P}$</annotation>\n </semantics></math> of Toeplitz numbers comprises all elements of [0, <i>b</i>[ whose digits <math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>a</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$(a_n)_{n\\geqslant 1}$</annotation>\n </semantics></math> in the base-<i>b</i> expansion satisfy <math>\n <semantics>\n <mrow>\n <msub>\n <mi>a</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>a</mi>\n <mrow>\n <mi>p</mi>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$a_n=a_{pn}$</annotation>\n </semantics></math> for all <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mi>P</mi>\n </mrow>\n <annotation>$p\\in {\\EuScript P}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n\\geqslant 1$</annotation>\n </semantics></math>. Using a completely additive arithmetical function, we construct a number in <math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>P</mi>\n </msub>\n <annotation>${\\EuScript T}_{\\EuScript P}$</annotation>\n </semantics></math> that is simply Borel normal if, and only if, <math>\n <semantics>\n <mstyle>\n <mrow>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>p</mi>\n <mo>∉</mo>\n <mi>P</mi>\n </mrow>\n </msub>\n <mn>1</mn>\n <mo>/</mo>\n <mi>p</mi>\n <mo>=</mo>\n <mi>∞</mi>\n </mrow>\n </mstyle>\n <annotation>$\\textstyle \\sum _{p\\not\\in {\\EuScript P}} 1/p=\\infty$</annotation>\n </semantics></math>. We then provide an effective bound for the discrepancy.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On simply normal numbers with digit dependencies\",\"authors\":\"Verónica Becher, Agustín Marchionna, Gérald Tenenbaum\",\"doi\":\"10.1112/mtk.12216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given an integer <math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$b\\\\geqslant 2$</annotation>\\n </semantics></math> and a set <math>\\n <semantics>\\n <mi>P</mi>\\n <annotation>${\\\\EuScript P}$</annotation>\\n </semantics></math> of prime numbers, the set <math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>P</mi>\\n </msub>\\n <annotation>${\\\\EuScript T}_{\\\\EuScript P}$</annotation>\\n </semantics></math> of Toeplitz numbers comprises all elements of [0, <i>b</i>[ whose digits <math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>a</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>$(a_n)_{n\\\\geqslant 1}$</annotation>\\n </semantics></math> in the base-<i>b</i> expansion satisfy <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>a</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mi>a</mi>\\n <mrow>\\n <mi>p</mi>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$a_n=a_{pn}$</annotation>\\n </semantics></math> for all <math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mi>P</mi>\\n </mrow>\\n <annotation>$p\\\\in {\\\\EuScript P}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 1$</annotation>\\n </semantics></math>. Using a completely additive arithmetical function, we construct a number in <math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>P</mi>\\n </msub>\\n <annotation>${\\\\EuScript T}_{\\\\EuScript P}$</annotation>\\n </semantics></math> that is simply Borel normal if, and only if, <math>\\n <semantics>\\n <mstyle>\\n <mrow>\\n <msub>\\n <mo>∑</mo>\\n <mrow>\\n <mi>p</mi>\\n <mo>∉</mo>\\n <mi>P</mi>\\n </mrow>\\n </msub>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mi>∞</mi>\\n </mrow>\\n </mstyle>\\n <annotation>$\\\\textstyle \\\\sum _{p\\\\not\\\\in {\\\\EuScript P}} 1/p=\\\\infty$</annotation>\\n </semantics></math>. We then provide an effective bound for the discrepancy.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12216\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12216","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用