通过协同策略在宽温度范围内实现高性能4.6 V licoo2

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2023-04-10 DOI:10.1002/eom2.12344
Jincan Ren, Yu Tang, Weibao Li, Dong He, He Zhu, Xingyu Wang, Si Lan, Zijia Yin, Tingting Yang, Zhaowen Bai, Yang Ren, Xiangheng Xiao, Qi Liu
{"title":"通过协同策略在宽温度范围内实现高性能4.6 V licoo2","authors":"Jincan Ren,&nbsp;Yu Tang,&nbsp;Weibao Li,&nbsp;Dong He,&nbsp;He Zhu,&nbsp;Xingyu Wang,&nbsp;Si Lan,&nbsp;Zijia Yin,&nbsp;Tingting Yang,&nbsp;Zhaowen Bai,&nbsp;Yang Ren,&nbsp;Xiangheng Xiao,&nbsp;Qi Liu","doi":"10.1002/eom2.12344","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, LiCoO<sub>2</sub> has dominated the cathode technology of lithium-ion batteries (LIBs) for 3C digital devices, but the sluggish electrochemical kinetics and severe structure destruction limit its further application under extreme temperatures. Herein, we design a synergetic strategy including La, Mg co-doping and LiAlO<sub>2</sub>@Al<sub>2</sub>O<sub>3</sub> surface coating. Typically, the La<sup>3+</sup> increases the interlayer distance and significantly enhances the ionic conductivity, the Mg<sup>2+</sup> improves electronic conductivity, and the LiAlO<sub>2</sub>@Al<sub>2</sub>O<sub>3</sub> coating layer improves the interfacial charge transfer and suppresses the polarization. The co-modified LiCoO<sub>2</sub> (CM-LCO) shows excellent temperature adaptability with remarkable electrochemical performance in a wide temperature range (−40–70°C). Remarkably, the CM-LCO also exhibits excellent cycle stability and high-rate performance at extreme temperatures. The synergistic effects of this co-modification strategy are demonstrated by investigating the electrochemical reaction kinetics and structure evolution of CM-LCO. This work proposes a promising strategy for the application of the high-voltage LCO in a wide temperature range.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12344","citationCount":"2","resultStr":"{\"title\":\"Enabling high-performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy\",\"authors\":\"Jincan Ren,&nbsp;Yu Tang,&nbsp;Weibao Li,&nbsp;Dong He,&nbsp;He Zhu,&nbsp;Xingyu Wang,&nbsp;Si Lan,&nbsp;Zijia Yin,&nbsp;Tingting Yang,&nbsp;Zhaowen Bai,&nbsp;Yang Ren,&nbsp;Xiangheng Xiao,&nbsp;Qi Liu\",\"doi\":\"10.1002/eom2.12344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, LiCoO<sub>2</sub> has dominated the cathode technology of lithium-ion batteries (LIBs) for 3C digital devices, but the sluggish electrochemical kinetics and severe structure destruction limit its further application under extreme temperatures. Herein, we design a synergetic strategy including La, Mg co-doping and LiAlO<sub>2</sub>@Al<sub>2</sub>O<sub>3</sub> surface coating. Typically, the La<sup>3+</sup> increases the interlayer distance and significantly enhances the ionic conductivity, the Mg<sup>2+</sup> improves electronic conductivity, and the LiAlO<sub>2</sub>@Al<sub>2</sub>O<sub>3</sub> coating layer improves the interfacial charge transfer and suppresses the polarization. The co-modified LiCoO<sub>2</sub> (CM-LCO) shows excellent temperature adaptability with remarkable electrochemical performance in a wide temperature range (−40–70°C). Remarkably, the CM-LCO also exhibits excellent cycle stability and high-rate performance at extreme temperatures. The synergistic effects of this co-modification strategy are demonstrated by investigating the electrochemical reaction kinetics and structure evolution of CM-LCO. This work proposes a promising strategy for the application of the high-voltage LCO in a wide temperature range.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"5 6\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12344\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

目前,LiCoO2在3C数码设备锂离子电池(LIBs)正极技术中占据主导地位,但电化学动力学缓慢和结构破坏严重限制了其在极端温度下的进一步应用。在此,我们设计了一种包括La、Mg共掺杂和LiAlO2@Al2O3表面涂层的协同策略。La3+增加了层间距离,显著提高了离子电导率,Mg2+提高了电子电导率,LiAlO2@Al2O3涂层改善了界面电荷转移,抑制了极化。共改性LiCoO2 (CM-LCO)具有良好的温度适应性,在−40 ~ 70℃的宽温度范围内具有优异的电化学性能。值得注意的是,CM-LCO在极端温度下也表现出出色的循环稳定性和高速率性能。通过对CM-LCO的电化学反应动力学和结构演变的研究,证明了这种共改性策略的协同效应。这项工作为高压LCO在宽温度范围内的应用提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enabling high-performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy

Enabling high-performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy

Nowadays, LiCoO2 has dominated the cathode technology of lithium-ion batteries (LIBs) for 3C digital devices, but the sluggish electrochemical kinetics and severe structure destruction limit its further application under extreme temperatures. Herein, we design a synergetic strategy including La, Mg co-doping and LiAlO2@Al2O3 surface coating. Typically, the La3+ increases the interlayer distance and significantly enhances the ionic conductivity, the Mg2+ improves electronic conductivity, and the LiAlO2@Al2O3 coating layer improves the interfacial charge transfer and suppresses the polarization. The co-modified LiCoO2 (CM-LCO) shows excellent temperature adaptability with remarkable electrochemical performance in a wide temperature range (−40–70°C). Remarkably, the CM-LCO also exhibits excellent cycle stability and high-rate performance at extreme temperatures. The synergistic effects of this co-modification strategy are demonstrated by investigating the electrochemical reaction kinetics and structure evolution of CM-LCO. This work proposes a promising strategy for the application of the high-voltage LCO in a wide temperature range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信