{"title":"胚胎鱼晶状体摘除方案及其在眼退化发育影响中的应用","authors":"L. Espinasa, M. Pavie, S. Rétaux","doi":"10.3897/subtbiol.45.96963","DOIUrl":null,"url":null,"abstract":"The lens plays a central role in the development of the optic cup. In fish, regression of the eye early in development affects the development of the craniofacial skeleton, the size of the olfactory pits, the optic nerve, and the tectum. Lens removal further affects olfaction, prey capture, and aggression. The similarity of the fish eye to other vertebrates is the basis for its use as an excellent animal model of human defects. Questions regarding the effects of eye regression are specifically well-suited to be addressed by using fish from the genus Astyanax. The species has two morphs; an eyeless cave morph and an eyed, surface morph. In the cavefish, a lens initially develops in embryos, but then degenerates by apoptosis. The cavefish retina is subsequently disorganized, degenerates, and retinal growth is arrested. The same effect is observed in surface fish when the lens is removed or exchanged for a cavefish lens. While studies can greatly benefit from a control group of surface fish with regressed eyes brought through lensectomies, few studies include them because of technical difficulties and the low survivorship of embryos that undergo this procedure. Here we describe a technique with significant modification for improvement for conducting lensectomy in one-day-old Astyanax and other fish, including zebrafish. Yields of up to 30 live embryos were obtained using this technique from a single spawn, thus enabling studies that require large sample sizes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protocol for lens removal in embryonic fish and its application on the developmental effects of eye regression\",\"authors\":\"L. Espinasa, M. Pavie, S. Rétaux\",\"doi\":\"10.3897/subtbiol.45.96963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lens plays a central role in the development of the optic cup. In fish, regression of the eye early in development affects the development of the craniofacial skeleton, the size of the olfactory pits, the optic nerve, and the tectum. Lens removal further affects olfaction, prey capture, and aggression. The similarity of the fish eye to other vertebrates is the basis for its use as an excellent animal model of human defects. Questions regarding the effects of eye regression are specifically well-suited to be addressed by using fish from the genus Astyanax. The species has two morphs; an eyeless cave morph and an eyed, surface morph. In the cavefish, a lens initially develops in embryos, but then degenerates by apoptosis. The cavefish retina is subsequently disorganized, degenerates, and retinal growth is arrested. The same effect is observed in surface fish when the lens is removed or exchanged for a cavefish lens. While studies can greatly benefit from a control group of surface fish with regressed eyes brought through lensectomies, few studies include them because of technical difficulties and the low survivorship of embryos that undergo this procedure. Here we describe a technique with significant modification for improvement for conducting lensectomy in one-day-old Astyanax and other fish, including zebrafish. Yields of up to 30 live embryos were obtained using this technique from a single spawn, thus enabling studies that require large sample sizes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3897/subtbiol.45.96963\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3897/subtbiol.45.96963","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Protocol for lens removal in embryonic fish and its application on the developmental effects of eye regression
The lens plays a central role in the development of the optic cup. In fish, regression of the eye early in development affects the development of the craniofacial skeleton, the size of the olfactory pits, the optic nerve, and the tectum. Lens removal further affects olfaction, prey capture, and aggression. The similarity of the fish eye to other vertebrates is the basis for its use as an excellent animal model of human defects. Questions regarding the effects of eye regression are specifically well-suited to be addressed by using fish from the genus Astyanax. The species has two morphs; an eyeless cave morph and an eyed, surface morph. In the cavefish, a lens initially develops in embryos, but then degenerates by apoptosis. The cavefish retina is subsequently disorganized, degenerates, and retinal growth is arrested. The same effect is observed in surface fish when the lens is removed or exchanged for a cavefish lens. While studies can greatly benefit from a control group of surface fish with regressed eyes brought through lensectomies, few studies include them because of technical difficulties and the low survivorship of embryos that undergo this procedure. Here we describe a technique with significant modification for improvement for conducting lensectomy in one-day-old Astyanax and other fish, including zebrafish. Yields of up to 30 live embryos were obtained using this technique from a single spawn, thus enabling studies that require large sample sizes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.