Kabiru Ayobami Jimoh, Norhashila Hashim, Rosnah Shamsudin, Hasfalina Che Man, Mahirah Jahari, Daniel I. Onwude
{"title":"谷物干燥工艺研究进展","authors":"Kabiru Ayobami Jimoh, Norhashila Hashim, Rosnah Shamsudin, Hasfalina Che Man, Mahirah Jahari, Daniel I. Onwude","doi":"10.1007/s12393-023-09333-7","DOIUrl":null,"url":null,"abstract":"<div><p>Grain drying is a vital operation in preparing finished grain products such as flour, drinks, confectioneries and infant food. The grain drying kinetics is governed by the heat and mass transfer process between the grain and the environment. Incomplete, improper and over-drying are crucial to the grain quality and negatively influence the acceptance of the grain by the consumers. Dried grain moisture content is a critical factor for developing grain drying systems and selecting optimal performance by researchers and the grain processing industry. Many grain drying technologies such as fluidised bed dryers, fixed bed dryers, infrared dryers, microwave dryers, vacuum dryers and freeze dryers have been used in recent years. To improve the drying process of grain, researchers have combined some drying technologies such as microwave + hot air, infrared + hot air and microwave + a fluidised bed dryer. Also, they introduce some treatments such as ultrasound dielectric and dehumidification. These methods enhance the dryer performance, such as higher moisture removal, reduced processing time, higher energy efficiency and nutrient retention. Therefore, this review focused on the drying conditions, time, energy consumption, nutrient retention and cost associated with the reduction of moisture content in grain to a suitable safe level for further processing and storage.\n</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 3","pages":"548 - 576"},"PeriodicalIF":5.3000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12393-023-09333-7.pdf","citationCount":"5","resultStr":"{\"title\":\"Recent Advances in the Drying Process of Grains\",\"authors\":\"Kabiru Ayobami Jimoh, Norhashila Hashim, Rosnah Shamsudin, Hasfalina Che Man, Mahirah Jahari, Daniel I. Onwude\",\"doi\":\"10.1007/s12393-023-09333-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Grain drying is a vital operation in preparing finished grain products such as flour, drinks, confectioneries and infant food. The grain drying kinetics is governed by the heat and mass transfer process between the grain and the environment. Incomplete, improper and over-drying are crucial to the grain quality and negatively influence the acceptance of the grain by the consumers. Dried grain moisture content is a critical factor for developing grain drying systems and selecting optimal performance by researchers and the grain processing industry. Many grain drying technologies such as fluidised bed dryers, fixed bed dryers, infrared dryers, microwave dryers, vacuum dryers and freeze dryers have been used in recent years. To improve the drying process of grain, researchers have combined some drying technologies such as microwave + hot air, infrared + hot air and microwave + a fluidised bed dryer. Also, they introduce some treatments such as ultrasound dielectric and dehumidification. These methods enhance the dryer performance, such as higher moisture removal, reduced processing time, higher energy efficiency and nutrient retention. Therefore, this review focused on the drying conditions, time, energy consumption, nutrient retention and cost associated with the reduction of moisture content in grain to a suitable safe level for further processing and storage.\\n</p></div>\",\"PeriodicalId\":565,\"journal\":{\"name\":\"Food Engineering Reviews\",\"volume\":\"15 3\",\"pages\":\"548 - 576\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12393-023-09333-7.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Engineering Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12393-023-09333-7\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-023-09333-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Grain drying is a vital operation in preparing finished grain products such as flour, drinks, confectioneries and infant food. The grain drying kinetics is governed by the heat and mass transfer process between the grain and the environment. Incomplete, improper and over-drying are crucial to the grain quality and negatively influence the acceptance of the grain by the consumers. Dried grain moisture content is a critical factor for developing grain drying systems and selecting optimal performance by researchers and the grain processing industry. Many grain drying technologies such as fluidised bed dryers, fixed bed dryers, infrared dryers, microwave dryers, vacuum dryers and freeze dryers have been used in recent years. To improve the drying process of grain, researchers have combined some drying technologies such as microwave + hot air, infrared + hot air and microwave + a fluidised bed dryer. Also, they introduce some treatments such as ultrasound dielectric and dehumidification. These methods enhance the dryer performance, such as higher moisture removal, reduced processing time, higher energy efficiency and nutrient retention. Therefore, this review focused on the drying conditions, time, energy consumption, nutrient retention and cost associated with the reduction of moisture content in grain to a suitable safe level for further processing and storage.
期刊介绍:
Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.