拟遗传代数与有向Boces对应关系的推广

Pub Date : 2023-07-03 DOI:10.1007/s10468-023-10212-2
Yuichiro Goto
{"title":"拟遗传代数与有向Boces对应关系的推广","authors":"Yuichiro Goto","doi":"10.1007/s10468-023-10212-2","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-hereditary algebras were introduced by Cline, Parshall and Scott to study the highest weight categories in Lie theory. On the other hand, bocses were introduced in the context of Drozd’s tame and wild dichotomy theorem. Koenig, Külshammer and Ovsienko connected the two areas by giving equivalences between the categories of <span>\\(\\Delta \\)</span>-filtered modules over quasi-hereditary algebras and those of modules over directed bocses. In this article, we extend this result to <span>\\(\\overline{\\Delta }\\)</span>-filtered algebras. We face two problems when proving a similar theorem for <span>\\(\\overline{\\Delta }\\)</span>-filtered algebras. The first one is that the <span>\\(\\textrm{Ext}\\)</span>-algebra of proper standard modules may be infinite dimensional. The second one is that the underlying algebra <i>B</i> of the bocs <span>\\(\\mathcal {B}\\)</span> induced from a <span>\\(\\overline{\\Delta }\\)</span>-filtered algebra may be infinite dimensional. We give solutions for these problems and show the relationship between the categories of <span>\\(\\overline{\\Delta }\\)</span>-filtered modules over <span>\\(\\overline{\\Delta }\\)</span>-filtered algebras and those of modules over some class of bocses.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalization of the Correspondences Between Quasi-Hereditary Algebras and Directed Bocses\",\"authors\":\"Yuichiro Goto\",\"doi\":\"10.1007/s10468-023-10212-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quasi-hereditary algebras were introduced by Cline, Parshall and Scott to study the highest weight categories in Lie theory. On the other hand, bocses were introduced in the context of Drozd’s tame and wild dichotomy theorem. Koenig, Külshammer and Ovsienko connected the two areas by giving equivalences between the categories of <span>\\\\(\\\\Delta \\\\)</span>-filtered modules over quasi-hereditary algebras and those of modules over directed bocses. In this article, we extend this result to <span>\\\\(\\\\overline{\\\\Delta }\\\\)</span>-filtered algebras. We face two problems when proving a similar theorem for <span>\\\\(\\\\overline{\\\\Delta }\\\\)</span>-filtered algebras. The first one is that the <span>\\\\(\\\\textrm{Ext}\\\\)</span>-algebra of proper standard modules may be infinite dimensional. The second one is that the underlying algebra <i>B</i> of the bocs <span>\\\\(\\\\mathcal {B}\\\\)</span> induced from a <span>\\\\(\\\\overline{\\\\Delta }\\\\)</span>-filtered algebra may be infinite dimensional. We give solutions for these problems and show the relationship between the categories of <span>\\\\(\\\\overline{\\\\Delta }\\\\)</span>-filtered modules over <span>\\\\(\\\\overline{\\\\Delta }\\\\)</span>-filtered algebras and those of modules over some class of bocses.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10212-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10212-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准遗传代数由克莱因、帕肖尔和斯科特引入,用于研究李理论中的最高权范畴。另一方面,Bocses 是在研究德罗兹德的驯与野二分定理时引入的。柯尼希(Koenig)、库尔沙默(Külshammer)和奥夫先科(Ovsienko)通过给出准遗传代数上的\(\Δ \)过滤模块类别与有向玻色上的模块类别之间的等价性,把这两个领域联系了起来。在本文中,我们将这一结果扩展到了(\overline{△ })过滤代数。在证明类似的定理时,我们面临两个问题。第一个问题是适当标准模块的 \(text\rm{Ext}\)- 代数可能是无限维的。第二个问题是,由 \(\overline{Delta }\) 过滤代数诱导的 bocs \(\mathcal {B}\) 的底层代数 B 可能是无限维的。我们给出了这些问题的解决方案,并展示了在\(\overline{\Delta }\) 过滤代数上的\(\overline{\Delta }\) 过滤模块类别与在某类 bocs 上的模块类别之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Generalization of the Correspondences Between Quasi-Hereditary Algebras and Directed Bocses

Quasi-hereditary algebras were introduced by Cline, Parshall and Scott to study the highest weight categories in Lie theory. On the other hand, bocses were introduced in the context of Drozd’s tame and wild dichotomy theorem. Koenig, Külshammer and Ovsienko connected the two areas by giving equivalences between the categories of \(\Delta \)-filtered modules over quasi-hereditary algebras and those of modules over directed bocses. In this article, we extend this result to \(\overline{\Delta }\)-filtered algebras. We face two problems when proving a similar theorem for \(\overline{\Delta }\)-filtered algebras. The first one is that the \(\textrm{Ext}\)-algebra of proper standard modules may be infinite dimensional. The second one is that the underlying algebra B of the bocs \(\mathcal {B}\) induced from a \(\overline{\Delta }\)-filtered algebra may be infinite dimensional. We give solutions for these problems and show the relationship between the categories of \(\overline{\Delta }\)-filtered modules over \(\overline{\Delta }\)-filtered algebras and those of modules over some class of bocses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信