D. Gaigall, Julian Gerstenberg, Thi Thu Huyen Trinh
{"title":"部分分类数据伴随物的经验过程及其在统计学中的应用","authors":"D. Gaigall, Julian Gerstenberg, Thi Thu Huyen Trinh","doi":"10.3150/21-bej1367","DOIUrl":null,"url":null,"abstract":"On the basis of independent and identically distributed bivariate random vectors, where the components are categorial and continuous variables, respectively, the related concomitants, also called induced order statistic, are considered. The main theoretical result is a functional central limit theorem for the empirical process of the concomitants in a triangular array setting. A natural application is hypothesis testing. An independence test and a two-sample test are investigated in detail. The fairly general setting enables limit results under local alternatives and bootstrap samples. For the comparison with existing tests from the literature simulation studies are conducted. The empirical results obtained confirm the theoretical findings.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical process of concomitants for partly categorial data and applications in statistics\",\"authors\":\"D. Gaigall, Julian Gerstenberg, Thi Thu Huyen Trinh\",\"doi\":\"10.3150/21-bej1367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of independent and identically distributed bivariate random vectors, where the components are categorial and continuous variables, respectively, the related concomitants, also called induced order statistic, are considered. The main theoretical result is a functional central limit theorem for the empirical process of the concomitants in a triangular array setting. A natural application is hypothesis testing. An independence test and a two-sample test are investigated in detail. The fairly general setting enables limit results under local alternatives and bootstrap samples. For the comparison with existing tests from the literature simulation studies are conducted. The empirical results obtained confirm the theoretical findings.\",\"PeriodicalId\":55387,\"journal\":{\"name\":\"Bernoulli\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bernoulli\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/21-bej1367\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-bej1367","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Empirical process of concomitants for partly categorial data and applications in statistics
On the basis of independent and identically distributed bivariate random vectors, where the components are categorial and continuous variables, respectively, the related concomitants, also called induced order statistic, are considered. The main theoretical result is a functional central limit theorem for the empirical process of the concomitants in a triangular array setting. A natural application is hypothesis testing. An independence test and a two-sample test are investigated in detail. The fairly general setting enables limit results under local alternatives and bootstrap samples. For the comparison with existing tests from the literature simulation studies are conducted. The empirical results obtained confirm the theoretical findings.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.