基于模糊逻辑和人工神经网络的输电线路智能故障诊断

Q3 Engineering
Diagnostyka Pub Date : 2022-11-14 DOI:10.29354/diag/156495
K. Touati, M. Boudiaf, I. Merzouk, A. Hafaifa
{"title":"基于模糊逻辑和人工神经网络的输电线路智能故障诊断","authors":"K. Touati, M. Boudiaf, I. Merzouk, A. Hafaifa","doi":"10.29354/diag/156495","DOIUrl":null,"url":null,"abstract":"In the industrial sector, transmission lines are an important part of the electrical grid. Thus it is important to protect it from all the different faults that may occur as soon as possible to supply the electric power continuously. This paper presents a modern solutions and a comparative study of fault detection and identification in electrical transmission lines using artificial neural network (ANN) compare to the fuzzy logic. Faults in transmission line of various types have been created using simulation model. An intelligent monitoring system (IFD: Intelligent Fault Diagnosis) was used at both ends of a 230 kV overhead transmission line, voltage and current measurements exploited as indicator data for this system. Both approaches were found to be robust, accurate and reliable to detect the fault when it occurs, to determine the fault type short circuit or opening of a power line (open circuit), to locate the fault and to determine which phase was faulted.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent fault diagnosis of power transmission line using fuzzy logic and artificial neural network\",\"authors\":\"K. Touati, M. Boudiaf, I. Merzouk, A. Hafaifa\",\"doi\":\"10.29354/diag/156495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the industrial sector, transmission lines are an important part of the electrical grid. Thus it is important to protect it from all the different faults that may occur as soon as possible to supply the electric power continuously. This paper presents a modern solutions and a comparative study of fault detection and identification in electrical transmission lines using artificial neural network (ANN) compare to the fuzzy logic. Faults in transmission line of various types have been created using simulation model. An intelligent monitoring system (IFD: Intelligent Fault Diagnosis) was used at both ends of a 230 kV overhead transmission line, voltage and current measurements exploited as indicator data for this system. Both approaches were found to be robust, accurate and reliable to detect the fault when it occurs, to determine the fault type short circuit or opening of a power line (open circuit), to locate the fault and to determine which phase was faulted.\",\"PeriodicalId\":52164,\"journal\":{\"name\":\"Diagnostyka\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29354/diag/156495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/156495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

在工业部门,输电线路是电网的重要组成部分。因此,重要的是要保护它免受可能尽快发生的所有不同故障的影响,以便持续供电。本文提出了一种现代解决方案,并将人工神经网络与模糊逻辑相比较,对输电线路故障检测和识别进行了比较研究。利用仿真模型建立了输电线路中各种类型的故障。在230kV架空输电线路的两端使用了智能监测系统(IFD:intelligent Fault Diagnosis),电压和电流测量值被用作该系统的指示数据。研究发现,这两种方法都是稳健、准确和可靠的,可以在故障发生时检测故障,确定故障类型短路或电力线开路(开路),定位故障并确定哪个相出现故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent fault diagnosis of power transmission line using fuzzy logic and artificial neural network
In the industrial sector, transmission lines are an important part of the electrical grid. Thus it is important to protect it from all the different faults that may occur as soon as possible to supply the electric power continuously. This paper presents a modern solutions and a comparative study of fault detection and identification in electrical transmission lines using artificial neural network (ANN) compare to the fuzzy logic. Faults in transmission line of various types have been created using simulation model. An intelligent monitoring system (IFD: Intelligent Fault Diagnosis) was used at both ends of a 230 kV overhead transmission line, voltage and current measurements exploited as indicator data for this system. Both approaches were found to be robust, accurate and reliable to detect the fault when it occurs, to determine the fault type short circuit or opening of a power line (open circuit), to locate the fault and to determine which phase was faulted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostyka
Diagnostyka Engineering-Mechanical Engineering
CiteScore
2.20
自引率
0.00%
发文量
41
期刊介绍: Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信