止血和血栓。微观尺度下生化过程的空间组织

IF 1.1 Q4 CELL BIOLOGY
M. A. Panteleev, A. M. Shibeko, D. Y. Nechipurenko, E. A. Beresneva, N. A. Podoplelova, A. N. Sveshnikova
{"title":"止血和血栓。微观尺度下生化过程的空间组织","authors":"M. A. Panteleev,&nbsp;A. M. Shibeko,&nbsp;D. Y. Nechipurenko,&nbsp;E. A. Beresneva,&nbsp;N. A. Podoplelova,&nbsp;A. N. Sveshnikova","doi":"10.1134/S1990747822030084","DOIUrl":null,"url":null,"abstract":"<p>Blood coagulation and fibrinolysis systems are enzymatic cascades in blood plasma that control formation and dissolution of a fibrin clot, respectively. However, critical processes in both systems occur on specialized scaffolds but not in the liquid phase. These scaffolds are two- or three-dimensional matrices that provide special conditions for biochemical reactions. The following fundamental categories of scaffolds can be distinguished: (a) phospholipid membranes enriched with phosphatidylserine provided by a procoagulant subpopulation of activated platelets, as well as damaged endothelium; membranes of apoptotic bodies in atherosclerotic plaque; lipoproteins and plasma microvesicles; (b) complex of fibrin and extracellular matrix proteins, which is associated with platelets and is the leading scaffold for pro- and anti-fibrinolytic processes; (c) polymers containing phosphate groups, including platelet polyphosphates and neutrophil extracellular traps. For some of these scaffolds, there are speculations about their physiological significance and physical meaning, while the role of others seems mysterious or at least pathophysiological. Herein we consider existing ideas about the roles and mechanisms of the involvement of these scaffolds in haemostasis and thrombosis.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"16 2","pages":"107 - 114"},"PeriodicalIF":1.1000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Haemostasis and Thrombosis. Spatial Organization of the Biochemical Processes at Microscale\",\"authors\":\"M. A. Panteleev,&nbsp;A. M. Shibeko,&nbsp;D. Y. Nechipurenko,&nbsp;E. A. Beresneva,&nbsp;N. A. Podoplelova,&nbsp;A. N. Sveshnikova\",\"doi\":\"10.1134/S1990747822030084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Blood coagulation and fibrinolysis systems are enzymatic cascades in blood plasma that control formation and dissolution of a fibrin clot, respectively. However, critical processes in both systems occur on specialized scaffolds but not in the liquid phase. These scaffolds are two- or three-dimensional matrices that provide special conditions for biochemical reactions. The following fundamental categories of scaffolds can be distinguished: (a) phospholipid membranes enriched with phosphatidylserine provided by a procoagulant subpopulation of activated platelets, as well as damaged endothelium; membranes of apoptotic bodies in atherosclerotic plaque; lipoproteins and plasma microvesicles; (b) complex of fibrin and extracellular matrix proteins, which is associated with platelets and is the leading scaffold for pro- and anti-fibrinolytic processes; (c) polymers containing phosphate groups, including platelet polyphosphates and neutrophil extracellular traps. For some of these scaffolds, there are speculations about their physiological significance and physical meaning, while the role of others seems mysterious or at least pathophysiological. Herein we consider existing ideas about the roles and mechanisms of the involvement of these scaffolds in haemostasis and thrombosis.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":\"16 2\",\"pages\":\"107 - 114\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747822030084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747822030084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

凝血和纤溶系统是血浆中的酶级联反应,分别控制纤维蛋白凝块的形成和溶解。然而,这两种系统中的关键过程都发生在专门的支架上,而不是在液相中。这些支架是为生化反应提供特殊条件的二维或三维基质。支架可分为以下几种基本类型:(a)由活化血小板的促凝亚群提供的磷脂酰丝氨酸富集的磷脂膜,以及受损的内皮;动脉粥样硬化斑块中凋亡小体的膜;脂蛋白与血浆微泡;(b)纤维蛋白和细胞外基质蛋白的复合物,与血小板相关,是促和抗纤溶过程的主要支架;(c)含有磷酸基团的聚合物,包括血小板聚磷酸盐和中性粒细胞胞外陷阱。对于其中一些支架,人们对它们的生理意义和物理意义进行了推测,而另一些支架的作用似乎很神秘,或者至少是病理生理上的。在此,我们考虑了现有的关于这些支架在止血和血栓形成中的作用和机制的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Haemostasis and Thrombosis. Spatial Organization of the Biochemical Processes at Microscale

Haemostasis and Thrombosis. Spatial Organization of the Biochemical Processes at Microscale

Blood coagulation and fibrinolysis systems are enzymatic cascades in blood plasma that control formation and dissolution of a fibrin clot, respectively. However, critical processes in both systems occur on specialized scaffolds but not in the liquid phase. These scaffolds are two- or three-dimensional matrices that provide special conditions for biochemical reactions. The following fundamental categories of scaffolds can be distinguished: (a) phospholipid membranes enriched with phosphatidylserine provided by a procoagulant subpopulation of activated platelets, as well as damaged endothelium; membranes of apoptotic bodies in atherosclerotic plaque; lipoproteins and plasma microvesicles; (b) complex of fibrin and extracellular matrix proteins, which is associated with platelets and is the leading scaffold for pro- and anti-fibrinolytic processes; (c) polymers containing phosphate groups, including platelet polyphosphates and neutrophil extracellular traps. For some of these scaffolds, there are speculations about their physiological significance and physical meaning, while the role of others seems mysterious or at least pathophysiological. Herein we consider existing ideas about the roles and mechanisms of the involvement of these scaffolds in haemostasis and thrombosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信