{"title":"几种常用计算机模型对胶粘剂固化性的预测","authors":"Ibrahim Karaman, Kenan Kiliç, Cevdet Sögütlü","doi":"10.5552/drvind.2023.0029","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to predict the adhesion strength of the varnish, which is applied as a protective coating/finish on the surface of wooden material using soft computing models. In this study, the soft computing approaches were applied to oak (Quercus Petrea L.), chestnut (Castanea sativa M.), and scotch pine (Pinus sylvestris L.) with water-based, polyurethane, and acrylic varnishes. The adhesion strength of the varnish was determined in accordance with the Turkish Standard Institute-24624 and ASTM D4541. The outcome of the experiment was used to develop artificial neural network (ANN) and fuzzy logic (FL) prediction models. The total number of 360 data points was split as 80 % of training and 20 % of test for the model development. During the application of the ANN, 6 features were used as an input, while the adhesion strength was used as an output of the model. The coefficient of determination values (R2) for training and testing in the ANN models were 0.9939 and 0.9580, respectively. In the case of the ANFIS model, R2 values for training and testing were 0.9917 and 0.9929, respectively. Considering the MAPE, RMSE, and R2 values obtained from the results of both training and test values, it can be concluded that the ANFIS model showed a more successful performance in estimating varnish adhesion strength. Therefore, ANN and ANFIS have the potential to provide time and cost-efficient benefits in estimating wood adhesion strength.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predviđanje adhezivne čvrstoće nekih lakova uz pomoć modela mekog računalstva\",\"authors\":\"Ibrahim Karaman, Kenan Kiliç, Cevdet Sögütlü\",\"doi\":\"10.5552/drvind.2023.0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to predict the adhesion strength of the varnish, which is applied as a protective coating/finish on the surface of wooden material using soft computing models. In this study, the soft computing approaches were applied to oak (Quercus Petrea L.), chestnut (Castanea sativa M.), and scotch pine (Pinus sylvestris L.) with water-based, polyurethane, and acrylic varnishes. The adhesion strength of the varnish was determined in accordance with the Turkish Standard Institute-24624 and ASTM D4541. The outcome of the experiment was used to develop artificial neural network (ANN) and fuzzy logic (FL) prediction models. The total number of 360 data points was split as 80 % of training and 20 % of test for the model development. During the application of the ANN, 6 features were used as an input, while the adhesion strength was used as an output of the model. The coefficient of determination values (R2) for training and testing in the ANN models were 0.9939 and 0.9580, respectively. In the case of the ANFIS model, R2 values for training and testing were 0.9917 and 0.9929, respectively. Considering the MAPE, RMSE, and R2 values obtained from the results of both training and test values, it can be concluded that the ANFIS model showed a more successful performance in estimating varnish adhesion strength. Therefore, ANN and ANFIS have the potential to provide time and cost-efficient benefits in estimating wood adhesion strength.\",\"PeriodicalId\":11427,\"journal\":{\"name\":\"Drvna Industrija\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drvna Industrija\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5552/drvind.2023.0029\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5552/drvind.2023.0029","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Predviđanje adhezivne čvrstoće nekih lakova uz pomoć modela mekog računalstva
The purpose of this study was to predict the adhesion strength of the varnish, which is applied as a protective coating/finish on the surface of wooden material using soft computing models. In this study, the soft computing approaches were applied to oak (Quercus Petrea L.), chestnut (Castanea sativa M.), and scotch pine (Pinus sylvestris L.) with water-based, polyurethane, and acrylic varnishes. The adhesion strength of the varnish was determined in accordance with the Turkish Standard Institute-24624 and ASTM D4541. The outcome of the experiment was used to develop artificial neural network (ANN) and fuzzy logic (FL) prediction models. The total number of 360 data points was split as 80 % of training and 20 % of test for the model development. During the application of the ANN, 6 features were used as an input, while the adhesion strength was used as an output of the model. The coefficient of determination values (R2) for training and testing in the ANN models were 0.9939 and 0.9580, respectively. In the case of the ANFIS model, R2 values for training and testing were 0.9917 and 0.9929, respectively. Considering the MAPE, RMSE, and R2 values obtained from the results of both training and test values, it can be concluded that the ANFIS model showed a more successful performance in estimating varnish adhesion strength. Therefore, ANN and ANFIS have the potential to provide time and cost-efficient benefits in estimating wood adhesion strength.
期刊介绍:
"Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.