x2 + y2 + z2 + k x2 + y2 + z2 + k + 1的连续无平方值

IF 0.4 4区 数学 Q4 MATHEMATICS
Yanfei Feng
{"title":"x2 + y2 + z2 + k x2 + y2 + z2 + k + 1的连续无平方值","authors":"Yanfei Feng","doi":"10.21136/CMJ.2022.0154-22","DOIUrl":null,"url":null,"abstract":"We show that for any given integer k there exist infinitely many consecutive square-free numbers of the type x2 + y2 + z2 + k, x2 + y2 + z2 + k + 1. We also establish an asymptotic formula for 1 ⩽ x, y, z ⩽ H such that x2 + y2 + z2 + k, x2 + y2 + z2 + k + 1 are square-free. The method we used in this paper is due to Tolev.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"297 - 310"},"PeriodicalIF":0.4000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consecutive square-free values of the type x2 + y2 + z2 + k, x2 + y2 + z2 + k + 1\",\"authors\":\"Yanfei Feng\",\"doi\":\"10.21136/CMJ.2022.0154-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for any given integer k there exist infinitely many consecutive square-free numbers of the type x2 + y2 + z2 + k, x2 + y2 + z2 + k + 1. We also establish an asymptotic formula for 1 ⩽ x, y, z ⩽ H such that x2 + y2 + z2 + k, x2 + y2 + z2 + k + 1 are square-free. The method we used in this paper is due to Tolev.\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"73 1\",\"pages\":\"297 - 310\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2022.0154-22\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2022.0154-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于任何给定的整数k,存在无限多个类型为x2+y2+z2+k、x2+y2+z2+k+1的连续无平方数。我们还建立了1⩽x,y,z \10877 H的渐近公式,使得x2+y2+z2+k,x2+y2+z2+k+1是无平方的。我们在本文中使用的方法是由于托列夫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consecutive square-free values of the type x2 + y2 + z2 + k, x2 + y2 + z2 + k + 1
We show that for any given integer k there exist infinitely many consecutive square-free numbers of the type x2 + y2 + z2 + k, x2 + y2 + z2 + k + 1. We also establish an asymptotic formula for 1 ⩽ x, y, z ⩽ H such that x2 + y2 + z2 + k, x2 + y2 + z2 + k + 1 are square-free. The method we used in this paper is due to Tolev.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信